Dans ce papier, nous étudions des modèles de flocking existants et proposons des extensions afin d’améliorer leurs performances dans des environnements ayant des obstacles impactant les communications ainsi que les trajectoires des agents. En effet, les contraintes imposées par les obstacles sont généralement la cause de coupures de communication menant souvent à la séparation de la flotte en plusieurs clusters. Dans ce contexte, nous étendons deux modèles standards afin de renforcer leurs capacités à rester connectés dans des environnements avec différentes distributions d’obstacles. En tenant compte de la propagation radio, nous modélisons comment les obstacles impactent les communications dans un simulateur que nous utilisons notamment pour optimiser les paramètres du flocking. Les résultats des simulations montrent l’efficacité des modèles proposés et la façon dont ils s’adaptent à ces nouvelles contraintes environnementales.
In this paper, we study existing flocking models and propose extensions to improve their abilities to deal with environments having obstacles impacting the communication quality as well as the trajectories of the agents. Indeed, the constraints induced by the obstacles usually lead to communication outages resulting in the separation of the flock in multiple clusters. In this context, we extend two standard models to improve their ability to stay connected while evolving in environments with different obstacles distributions. By taking into account the radio propagation, we model the obstacles’ impact on communications in a simulator that we use to optimize flocking parameters. The simulation results show the efficiency of the proposed models and how they adapt to different environmental constraints.
Accepté le :
Publié le :
Keywords: Flocking models, swarm robotics, simulation of commmunications
Alexandre Bonnefond 1 ; Olivier Simonin 2 ; Isabelle Guérin-Lassous 3
@article{ROIA_2023__4_2_123_0, author = {Alexandre Bonnefond and Olivier Simonin and Isabelle Gu\'erin-Lassous}, title = {Mod\`eles de {Flocking} {Adapt\'es} aux {Environnements} avec {Obstacles} et {Communications} {D\'egrad\'ees}}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {123--145}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {4}, number = {2}, year = {2023}, doi = {10.5802/roia.59}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.59/} }
TY - JOUR AU - Alexandre Bonnefond AU - Olivier Simonin AU - Isabelle Guérin-Lassous TI - Modèles de Flocking Adaptés aux Environnements avec Obstacles et Communications Dégradées JO - Revue Ouverte d'Intelligence Artificielle PY - 2023 SP - 123 EP - 145 VL - 4 IS - 2 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.59/ DO - 10.5802/roia.59 LA - fr ID - ROIA_2023__4_2_123_0 ER -
%0 Journal Article %A Alexandre Bonnefond %A Olivier Simonin %A Isabelle Guérin-Lassous %T Modèles de Flocking Adaptés aux Environnements avec Obstacles et Communications Dégradées %J Revue Ouverte d'Intelligence Artificielle %D 2023 %P 123-145 %V 4 %N 2 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.59/ %R 10.5802/roia.59 %G fr %F ROIA_2023__4_2_123_0
Alexandre Bonnefond; Olivier Simonin; Isabelle Guérin-Lassous. Modèles de Flocking Adaptés aux Environnements avec Obstacles et Communications Dégradées. Revue Ouverte d'Intelligence Artificielle, Post-actes des Journées Francophones sur les Systèmes Multi-Agents (JFSMA 2021), Volume 4 (2023) no. 2, pp. 123-145. doi : 10.5802/roia.59. https://roia.centre-mersenne.org/articles/10.5802/roia.59/
[1] Behavior-based formation control for multirobot teams, IEEE Transactions on Robotics and Automation, Volume 14 (1998) no. 6, pp. 926-939 | DOI
[2] Pymoo : Multi-Objective Optimization in Python, IEEE Access, Volume 8 (2020), pp. 89497-89509 | DOI
[3] Flocking-Based Multi-Robot Exploration, 4th National Conference on “Control Architectures of Robots”, Toulouse, France (2009)
[4] An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I : Solving Problems With Box Constraints, IEEE Transactions on Evolutionary Computation, Volume 18 (2014) no. 4, pp. 577-601 | DOI
[5] A fast and elitist multiobjective genetic algorithm : NSGA-II, IEEE Transactions on Evolutionary Computation, Volume 6 (2002) no. 2, pp. 182-197 | DOI
[6] Simulating the effect of degraded wireless communications on emergent behavior, 2017 Winter Simulation Conference (WSC) (2017), pp. 4081-4092 | DOI
[7] Leader follower based formation control strategies for nonholonomic mobile robots : Design, implementation and experimental validation, Proceedings of the 2010 American Control Conference (2010), pp. 224-229 | DOI
[8] Queues and artificial potential trenches for multirobot formations, IEEE Transactions on Robotics, Volume 21 (2005) no. 4, pp. 646-656 | DOI
[9] Simulation and Performance Evaluation of the Intel Rate Adaptation Algorithm, MSWiM 2019 - 22nd ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ACM, Miami Beach, United States (2019), pp. 27-34 | DOI
[10] The CMA Evolution Strategy : A Tutorial (2016) (http://arxiv.org/abs/1604.00772)
[11] Performance evaluation of 802.11 WLAN in a real indoor environment, 2006 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (2006), pp. 140-147 | DOI
[12] Flocking control of a mobile sensor network to track and observe a moving target, 2009 IEEE International Conference on Robotics and Automation, IEEE, Kobe (2009), pp. 3129-3134 http://ieeexplore.ieee.org/document/5152747/ | DOI
[13] Flocking control for multi-agent systems with communication optimization, Proceedings of the American Control Conference (2013), pp. 2056-2061 | DOI
[14] Formation UAV flight control using virtual structure and motion synchronization, 2008 American Control Conference (2008), pp. 1782-1787 | DOI
[15] Hybrid System of Reinforcement Learning and Flocking Control in Multi-robot Domain, IEEE Transactions on Control Systems Technology (2016)
[16] Hund’s Rules, The Alternating Rule and Symmetry Holes, The Journal of Physical Chemistry, Volume 97 (1993) no. 10, p. 2425–2434 | DOI
[17] Flocking for multi-agent dynamic systems : algorithms and theory, IEEE Trans. Automat. Contr., Volume 51 (2006) no. 3, pp. 401-420 | DOI | MR | Zbl
[18] Wireless Communications : Principles and Practice, Prentice Hall PTR, USA, 2001
[19] Combining Stochastic Optimization and Frontiers for Aerial Multi-Robot Exploration of 3D Terrains, IROS 2019 - IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China (2019), pp. 4121-4126 | DOI
[20] Design of a force-based controlled mobility on aerial vehicles for pest management, Ad Hoc Networks, Volume 53 (2016), pp. 41-52 | DOI
[21] Flocks, Herds and Schools : A Distributed Behavioral Model, SIGGRAPH Comput. Graph., Volume 21 (1987) no. 4, p. 25–34 | DOI
[22] Flocking in Fixed and Switching Networks, IEEE Transactions on Automatic Control, Volume 52 (2007) no. 5, pp. 863-868 | DOI | MR | Zbl
[23] Optimized flocking of autonomous drones in confined environments, Science Robotics, Volume 3 (2018) no. 20, eaat3536 | DOI
[24] Novel Type of Phase Transition in a System of Self-driven Particules, Physical review letters, Volume 75 (1995) no. 6, pp. 1226-1229 | DOI
[25] Flocking algorithm for autonomous flying robots, Bioinspiration & Biomimetics, Volume 9 (2014) no. 2, 025012 | DOI
[26] Autonomous Navigation of UAVs in Large-Scale Complex Environments : A Deep Reinforcement Learning Approach, Transactions on Vehicular Technology, Volume 68 (2018) no. 3, pp. 2124-2136 | DOI
[27] Hybrid RF Propagation Model using ITM and Gaussian Processes for Communication-Aware Planning, RSS 2017 RCW Workshop (2017)
[28] A Connectivity-preserving flocking algorithm for multi-agent dynamical systems with bounded potential function, IET Control Theory Applications, Volume 6 (2012) no. 6, pp. 813-821 | DOI | MR
[29] A connectivity-preserving flocking algorithm for nonlinear multi-agent systems with bounded potential function, Proceedings of the 30th Chinese Control Conference, CCC 2011 (2011), p. 6018-6024.
[30] Graph-theoretic connectivity control of mobile robot networks, Proceedings of the IEEE, Volume 99 (2011) no. 9, pp. 1525-1540 | DOI
Cité par Sources :