Reconnaissance d’activités de la vie quotidienne au moyen de capteurs domotiques et d’apprentissage profond : lorsque syntaxe, sémantique et contexte se rencontrent
Revue Ouverte d'Intelligence Artificielle, Volume 4 (2023) no. 1, pp. 129-156.

Dans la thématique grandissante de la reconnaissance d’activités de la vie quotidienne au sein de maisons intelligentes, les réseaux de neurones basées sur les Long Short Term Memory (LSTM) ont démontré leur efficacité. En étudiant l’ordre des activations des capteurs et leurs dépendances temporelles, on traduit les actions humaines comme une suite d’événements dans le temps plus ou moins corrélés. Cependant, l’activité humaine n’est pas une suite d’actions dénuées de sens ni de contexte. Nous proposons d’utiliser et de comparer deux méthodes provenant du traitement du langage naturel pour, justement, prendre en compte la sémantique et le contexte des capteurs afin d’améliorer les algorithmes dans les tâches de classification de séquences d’activités : Word2Vec, un embedding de sémantique statique, et ELMo, un embedding contextuel. Les résultats, sur des datasets réels de maisons intelligentes, indiquent que cette approche fournit des informations utiles, comme une carte de l’organisation des capteurs, et réduit par ailleurs la confusion entre les classes d’activités quotidiennes. Elle permet d’obtenir de meilleures performances sur des datasets contenant des activités concurrentes avec plusieurs résidents ou des animaux domestiques. Nos tests montrent également que les embeddings peuvent être pré-entraînés sur des datasets différents du jeu de données cible, permettant ainsi un apprentissage par transfert. Nous démontrons ainsi que la prise en compte du contexte et de la sémantique des capteurs augmente les performances de classification des algorithmes et permet l’apprentissage par transfert.

Neural networks based on Long Short Term Memory (LSTM) have demonstrated their efficiency in the growing field of recognition of daily life activities in smart homes,. By studying the sensor activations order and their temporal dependencies, human actions are translated as a sequence of more or less correlated events in time. However, human activity is not a sequence of actions without meaning and context. We propose to use and compare two methods coming from natural language processing to take into account the semantics and context of sensors in order to improve algorithms in activity sequence classification: Word2Vec, a static semantic embedding, and ELMo, a contextual embedding. The results, on real smart home datasets, indicate that this approach provides useful information, such as a map of sensor organization, and also reduces confusion between classes of daily activities. It achieves better performance on datasets containing concurrent activities with multiple residents or pets. Our tests also show that embeddings can be pre-trained on datasets that are different from the target dataset, thus allowing transfer learning. We thus demonstrate that taking into account the context and semantics of the sensors increases the classification performance of the algorithms and enables transfer learning.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/roia.53
Mots clés : Reconnaissance d’activités quotidiennes, maisons intelligentes, modèles sémantiques, modèles syntaxiques, réseaux de neurones, apprentissage profond.

Damien Bouchabou 1 ; Sao Mai Nguyen 1 ; Christophe Lohr 1 ; Ioannis Kanellos 1 ; Benoit LeDuc 2

1 IMT Atlantique, Dept. Informatique, 655 avenue du technopole, 29280 Plouzané, France
2 Delta Dore, Dept. Informatique, 655 avenue du technopole, 35270 Bonnemain, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ROIA_2023__4_1_129_0,
     author = {Damien Bouchabou and Sao Mai Nguyen and Christophe Lohr and Ioannis Kanellos and Benoit LeDuc},
     title = {Reconnaissance d{\textquoteright}activit\'es de la vie quotidienne au moyen de capteurs domotiques et d{\textquoteright}apprentissage profond~: lorsque syntaxe, s\'emantique et contexte se rencontrent},
     journal = {Revue Ouverte d'Intelligence Artificielle},
     pages = {129--156},
     publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle},
     volume = {4},
     number = {1},
     year = {2023},
     doi = {10.5802/roia.53},
     language = {fr},
     url = {https://roia.centre-mersenne.org/articles/10.5802/roia.53/}
}
TY  - JOUR
AU  - Damien Bouchabou
AU  - Sao Mai Nguyen
AU  - Christophe Lohr
AU  - Ioannis Kanellos
AU  - Benoit LeDuc
TI  - Reconnaissance d’activités de la vie quotidienne au moyen de capteurs domotiques et d’apprentissage profond : lorsque syntaxe, sémantique et contexte se rencontrent
JO  - Revue Ouverte d'Intelligence Artificielle
PY  - 2023
SP  - 129
EP  - 156
VL  - 4
IS  - 1
PB  - Association pour la diffusion de la recherche francophone en intelligence artificielle
UR  - https://roia.centre-mersenne.org/articles/10.5802/roia.53/
DO  - 10.5802/roia.53
LA  - fr
ID  - ROIA_2023__4_1_129_0
ER  - 
%0 Journal Article
%A Damien Bouchabou
%A Sao Mai Nguyen
%A Christophe Lohr
%A Ioannis Kanellos
%A Benoit LeDuc
%T Reconnaissance d’activités de la vie quotidienne au moyen de capteurs domotiques et d’apprentissage profond : lorsque syntaxe, sémantique et contexte se rencontrent
%J Revue Ouverte d'Intelligence Artificielle
%D 2023
%P 129-156
%V 4
%N 1
%I Association pour la diffusion de la recherche francophone en intelligence artificielle
%U https://roia.centre-mersenne.org/articles/10.5802/roia.53/
%R 10.5802/roia.53
%G fr
%F ROIA_2023__4_1_129_0
Damien Bouchabou; Sao Mai Nguyen; Christophe Lohr; Ioannis Kanellos; Benoit LeDuc. Reconnaissance d’activités de la vie quotidienne au moyen de capteurs domotiques et d’apprentissage profond : lorsque syntaxe, sémantique et contexte se rencontrent. Revue Ouverte d'Intelligence Artificielle, Volume 4 (2023) no. 1, pp. 129-156. doi : 10.5802/roia.53. https://roia.centre-mersenne.org/articles/10.5802/roia.53/

[1] ES Abramova; KV Makarov; AA Orlov Method for Undefined Complex Human Activity Recognition, 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), IEEE (2021), pp. 797-801 | DOI

[2] Mihai Andries; Olivier Simonin; François Charpillet Localization of humans, objects, and robots interacting on load-sensing floors, IEEE Sensors Journal, Volume 16 (2015) no. 4, pp. 1026-1037 | DOI

[3] Barbara Rita Barricelli; Elena Casiraghi; Daniela Fogli A survey on digital twin : definitions, characteristics, applications, and design implications, IEEE access, Volume 7 (2019), pp. 167653-167671 | DOI

[4] Piotr Bojanowski; Edouard Grave; Armand Joulin; Tomas Mikolov Enriching word vectors with subword information, Transactions of the Association for Computational Linguistics, Volume 5 (2017), pp. 135-146 | DOI

[5] Damien Bouchabou; Sao Mai Nguyen; Christophe Lohr; Ioannis Kanellos; Benoit Leduc Fully Convolutional Network Bootstrapped by Word Encoding and Embedding for Activity Recognition in Smart Homes, IJCAI 2020 Workshop on Deep Learning for Human Activity Recognition, Yokohama, Japan (2021) | DOI

[6] Damien Bouchabou; Sao Mai Nguyen; Christophe Lohr; Benoit LeDuc; Ioannis Kanellos et al. A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms : Taxonomies, Challenges, and Opportunities with Deep Learning, Sensors, Volume 21 (2021) no. 18, 6037 | DOI

[7] Damien Bouchabou; Sao Mai Nguyen; Christophe Lohr; Benoit LeDuc; Ioannis Kanellos et al. Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes, Electronics, Volume 10 (2021) no. 20, 2498 | DOI

[8] Hancheng Cao; Fengli Xu; Jagan Sankaranarayanan; Yong Li; Hanan Samet Habit2vec : Trajectory semantic embedding for living pattern recognition in population, IEEE Transactions on Mobile Computing, Volume 19 (2019) no. 5, pp. 1096-1108 | DOI

[9] Marie Chan; Daniel Estève; Christophe Escriba; Éric Campo A review of smart homes – Present state and future challenges, Computer methods and programs in biomedicine, Volume 91 (2008) no. 1, pp. 55-81 | DOI

[10] Diane J. Cook; Aaron S. Crandall; Brian L. Thomas; Narayanan C. Krishnan CASAS : A smart home in a box, Computer, Volume 46 (2012) no. 7, pp. 62-69 | DOI

[11] L Minh Dang; Kyungbok Min; Hanxiang Wang; Md Jalil Piran; Cheol Hee Lee; Hyeonjoon Moon Sensor-based and vision-based human activity recognition : A comprehensive survey, Pattern Recognition, Volume 108 (2020), 107561 | DOI

[12] Emiro De-La-Hoz-Franco; Paola Ariza-Colpas; Javier Medina Quero; Macarena Espinilla Sensor-based datasets for human activity recognition – a systematic review of literature, IEEE Access, Volume 6 (2018), pp. 59192-59210 | DOI

[13] Desa. UN World population prospects 2019 : Highlights, United Nations Department for Economic and Social Affairs, New York, NY, 2019

[14] Jacob Devlin; Ming-Wei Chang; Kenton Lee; Kristina Toutanova Bert : Pre-training of deep bidirectional transformers for language understanding (2018) (https://arxiv.org/abs/1810.04805)

[15] Hassan Ismail Fawaz; Germain Forestier; Jonathan Weber; Lhassane Idoumghar; Pierre-Alain Muller Deep learning for time series classification : a review, Data Mining and Knowledge Discovery, Volume 33 (2019) no. 4, pp. 917-963 | DOI | MR | Zbl

[16] Munkhjargal Gochoo; Tan-Hsu Tan; Shing-Hong Liu; Fu-Rong Jean; Fady S Alnajjar; Shih-Chia Huang Unobtrusive activity recognition of elderly people living alone using anonymous binary sensors and DCNN, IEEE journal of biomedical and health informatics, Volume 23 (2019) no. 2, pp. 693-702 | DOI

[17] Rebeen Ali Hamad; Alberto Salguero Hidalgo; Mohamed-Rafik Bouguelia; Macarena Espinilla Estevez; Javier Medina Quero Efficient activity recognition in smart homes using delayed fuzzy temporal windows on binary sensors, IEEE journal of biomedical and health informatics, Volume 24 (2019) no. 2, pp. 387-395 | DOI

[18] Rebeen Ali Hamad; Longzhi Yang; Wai Lok Woo; Bo Wei Joint learning of temporal models to handle imbalanced data for human activity recognition, Applied Sciences, Volume 10 (2020) no. 15, 5293 | DOI

[19] Hugo Larochelle; Dumitru Erhan; Yoshua Bengio Zero-data learning of new tasks, Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI’08), Volume 1 (2008) no. 2, pp. 646-651

[20] Daniele Liciotti; Michele Bernardini; Luca Romeo; Emanuele Frontoni A Sequential Deep Learning Application for Recognising Human Activities in Smart Homes, Neurocomputing, Volume 396 (2020), pp. 501-513 | DOI

[21] Min Lin; Qiang Chen; Shuicheng Yan Network in network (2013) (https://arxiv.org/abs/1312.4400)

[22] Christophe Lohr; Jérôme Kerdreux Improvements of the xAAL home automation system, Future internet, Volume 12 (2020) no. 6, 104 | DOI

[23] Moe Matsuki; Paula Lago; Sozo Inoue Characterizing word embeddings for zero-shot sensor-based human activity recognition, Sensors, Volume 19 (2019) no. 22, 5043 | DOI

[24] Leland McInnes; John Healy; James Melville Umap : Uniform manifold approximation and projection for dimension reduction (2018) (https://arxiv.org/abs/1802.03426)

[25] Javier Medina-Quero; Shuai Zhang; Chris Nugent; Macarena Espinilla Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition, Expert Systems with Applications, Volume 114 (2018), pp. 441-453 | DOI

[26] Tomas Mikolov; Ilya Sutskever; Kai Chen; Greg Corrado; Jeffrey Dean Distributed representations of words and phrases and their compositionality (2013) (https://arxiv.org/abs/1310.4546)

[27] Gadelhag Mohmed; Ahmad Lotfi; Amir Pourabdollah Employing a deep convolutional neural network for human activity recognition based on binary ambient sensor data, Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments (2020), pp. 1-7 | DOI

[28] Matthew Mullin; Rahul Sukthankar Complete Cross-Validation for Nearest Neighbor Classifiers, Proceedings of the Seventeenth International Conference on Machine Learning (ICML ’00), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000), p. 639–646

[29] Jeffrey Pennington; Richard Socher; Christopher D. Manning Glove : Global vectors for word representation, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (2014), pp. 1532-1543 | DOI

[30] Matthew E Peters; Mark Neumann; Mohit Iyyer; Matt Gardner; Christopher Clark; Kenton Lee; Luke Zettlemoyer Deep contextualized word representations (2018) (https://arxiv.org/abs/1802.05365)

[31] Xavier Puig; Kevin Ra; Marko Boben; Jiaman Li; Tingwu Wang; Sanja Fidler; Antonio Torralba Virtualhome : Simulating household activities via programs, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 8494-8502 | DOI

[32] Alec Radford; Karthik Narasimhan; Tim Salimans; Ilya Sutskever Improving language understanding by generative pre-training, 2018

[33] Recognition of activities of daily living using home automation sensors and deep learning context and semantic, https://github.com/dbouchabou/HAR-Context-and-Semantic.git (Accessed : 2022-03-14)

[34] Radim Řehůřek; Petr Sojka Software Framework for Topic Modelling with Large Corpora, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, ELRA, Valletta, Malta (2010), pp. 45-50 (http://is.muni.cz/publication/884893/en) | DOI

[35] Stijn Schoeters; Wim Dewulf; Jean-Pierre Kruth; Han Haitjema; Bart Boeckmans Description and validation of a circular padding method for linear roughness measurements of short data lengths, MethodsX, Volume 7 (2020), 101122 | DOI

[36] Mohamed Sedky; Christopher Howard; Talal Alshammari; Nasser Alshammari Evaluating machine learning techniques for activity classification in smart home environments, International Journal of Information Systems and Computer Sciences, Volume 12 (2018) no. 2, pp. 48-54

[37] Rico Sennrich; Barry Haddow; Alexandra Birch Neural machine translation of rare words with subword units (2015) (https://arxiv.org/abs/1508.07909)

[38] Koichi Shimoda; Akihito Taya; Yoshito Tobe Combining Public Machine Learning Models by Using Word Embedding for Human Activity Recognition, 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), IEEE (2021), pp. 2-7 | DOI

[39] Deepika Singh; Erinc Merdivan; Sten Hanke; Johannes Kropf; Matthieu Geist; Andreas Holzinger Convolutional and recurrent neural networks for activity recognition in smart environment, Towards integrative machine learning and knowledge extraction, Springer, 2017, pp. 194-205 | DOI

[40] Deepika Singh; Erinc Merdivan; Ismini Psychoula; Johannes Kropf; Sten Hanke; Matthieu Geist; Andreas Holzinger Human activity recognition using recurrent neural networks, International Cross-Domain Conference for Machine Learning and Knowledge Extraction, Springer (2017), pp. 267-274 | DOI

[41] Knud Erik Skouby; Anri Kivimäki; Lotta Haukiputo; Per Lynggaard; Iwona Maria Windekilde Smart cities and the ageing population, The 32nd Meeting of WWRF (2014)

[42] Tan-Hsu Tan; Munkhjargal Gochoo; Shih-Chia Huang; Yi-Hung Liu; Shing-Hong Liu; Yun-Fa Huang Multi-resident activity recognition in a smart home using RGB activity image and DCNN, IEEE Sensors Journal, Volume 18 (2018) no. 23, pp. 9718-9727 | DOI

[43] Darcy Ann Umphred; Rolando T. Lazaro et al. Neurological rehabilitation, Elsevier Health Sciences, 2012

[44] Aiguo Wang; Shenghui Zhao; Chundi Zheng; Jing Yang; Guilin Chen; Chih-Yung Chang Activities of Daily Living Recognition With Binary Environment Sensors Using Deep Learning : A Comparative Study, IEEE Sensors Journal, Volume 21 (2020) no. 4, pp. 5423-5433 | DOI

[45] Zhiguang Wang; Weizhong Yan; Tim Oates Time series classification from scratch with deep neural networks : A strong baseline, 2017 International joint conference on neural networks (IJCNN), IEEE (2017), pp. 1578-1585 | DOI

[46] Shuang Wu; Guanrui Wang; Pei Tang; Feng Chen; Luping Shi Convolution with even-sized kernels and symmetric padding (2019) (https://arxiv.org/abs/1903.08385)

[47] Yonghui Wu; Mike Schuster; Zhifeng Chen; Quoc V Le; Mohammad Norouzi; Wolfgang Macherey; Maxim Krikun; Yuan Cao; Qin Gao; Klaus Macherey et al. Google’s neural machine translation system : Bridging the gap between human and machine translation (2016) (https://arxiv.org/abs/1609.08144)

Cité par Sources :