Dans le cadre du développement durable et des innovations dans les systèmes agroalimentaires, les systèmes mixtes horticoles (vergers et maraîchage) visent à répondre aux enjeux actuels auxquels l’agriculture est confrontée, à savoir une diminution de la pollution des sols, une meilleure gestion des ressources (eau, énergies) et un enrichissement de la biodiversité, tout en continuant d’assurer des fonctions alimentaires. Ils combinent des productions à la fois diversifiées et relativement intensifiées, leur permettant de s’insérer en périphérie urbaine. Ces systèmes agroforestiers reposent sur un ensemble complexe d’interactions modifiant l’utilisation de la lumière, de l’eau et des nutriments. La conception d’un tel système doit donc optimiser l’utilisation de ces ressources en maximisant les interactions positives (facilitations) et en minimisant celles négatives (compétitions). Nous définissons le problème de verger-maraîcher comme un problème d’allocation des arbres et des cultures dans les dimensions spatio-temporelles. Nous proposons deux formulations mathématiques : un modèle quadratique en variables binaires (BQP) et un modèle linéaire en variables mixtes (MILP), obtenant des premiers résultats sur des instances de taille réaliste. Les modèles de l’article sont disponibles ici : https://miat.inrae.fr/degivry/ROIA21.zip.
Mixed fruit-vegetable cropping systems are a promising way of ensuring environmentally sustainable agricultural production systems in response to the challenge of being able to fulfill local market requirements. They combine productions and make a better use of biodiversity. These agroforestry systems are based on a complex set of interactions modifying the utilization of light, water and nutrients. Thus, designing such systems requires to optimize the use of these resources : by maximizing positive interactions (facilitations) and minimizing negative ones (competitions). To reach these objectives, the system’s design has to include the spatial and temporal dimensions, taking into account the evolution of above- and belowground interactions over a time horizon. For that, we define the mixed fruit-vegetable cropping allocation problem using a discrete representation of the land and the interactions between vegetable crops and fruit trees. We propose two formulations of the problem, using Binary Quadratic Programming (BQP) and Mixed Integer Linear Programming (MILP), obtaining first results on realistic problem sizes. Models are available at https://miat.inrae.fr/degivry/ROIA21.zip.
Révisé le :
Accepté le :
Publié le :
Keywords: Agroecology, spatial and temporal crop allocation problem, discrete optimization, mathematical programming
Sara Maqrot 1 ; Simon de Givry 1 ; Marc Tchamitchian 2 ; Gauthier Quesnel 1

@article{ROIA_2021__2_1_157_0, author = {Sara Maqrot and Simon de Givry and Marc Tchamitchian and Gauthier Quesnel}, title = {Conception de syst\`emes de~verger-mara{\^\i}cher \`a l{\textquoteright}aide de~la~programmation math\'ematique}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {157--188}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {2}, number = {1}, year = {2021}, doi = {10.5802/roia.13}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.13/} }
TY - JOUR AU - Sara Maqrot AU - Simon de Givry AU - Marc Tchamitchian AU - Gauthier Quesnel TI - Conception de systèmes de verger-maraîcher à l’aide de la programmation mathématique JO - Revue Ouverte d'Intelligence Artificielle PY - 2021 SP - 157 EP - 188 VL - 2 IS - 1 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.13/ DO - 10.5802/roia.13 LA - fr ID - ROIA_2021__2_1_157_0 ER -
%0 Journal Article %A Sara Maqrot %A Simon de Givry %A Marc Tchamitchian %A Gauthier Quesnel %T Conception de systèmes de verger-maraîcher à l’aide de la programmation mathématique %J Revue Ouverte d'Intelligence Artificielle %D 2021 %P 157-188 %V 2 %N 1 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.13/ %R 10.5802/roia.13 %G fr %F ROIA_2021__2_1_157_0
Sara Maqrot; Simon de Givry; Marc Tchamitchian; Gauthier Quesnel. Conception de systèmes de verger-maraîcher à l’aide de la programmation mathématique. Revue Ouverte d'Intelligence Artificielle, Introduction ROIA Agriculture Numérique, Volume 2 (2021) no. 1, pp. 157-188. doi : 10.5802/roia.13. https://roia.centre-mersenne.org/articles/10.5802/roia.13/
[1] Solving the crop allocation problem using hard and soft constraints, RAIRO-Operations Research, Volume 47 (2013) no. 2, pp. 151-172 | DOI | Numdam
[2] A MIP flow model for crop-rotation planning in a context of forest sustainable development, Annals of operations research, Volume 190 (2011) no. 1, pp. 149-164 | DOI
[3] A branch-and-price-and-cut approach for sustainable crop rotation planning, European Journal of Operational Research, Volume 241 (2015) no. 3, pp. 872-879 | DOI
[4] The growth, activity and distribution of the fruit tree root system, Plant and Soil, Volume 71 (1983), pp. 23-35 | DOI
[5] Ecological Basis of Agroforestry, CRC Press, 2007 http://library.uniteddiversity.coop/Permaculture/Agroforestry/Ecological_basis_of_agroforestry.pdf
[6] Partitioning procedures for solving mixed-variables programming problems, Numerische mathematik, Volume 4 (1962) no. 1, pp. 238-252 http://www.springerlink.com/index/g203830n1gm58w73.pdf | DOI
[7] Guidelines for integrated production of arable crops in Europe, Wadenswil, Switzerland, 12-13 April 1997 : IOBC Technical guideline III (Ernst F. Boller; C. Malavolta; E. Jorg; International Organization for Biological Control of Noxious Animals and Plants, eds.), IOBC / wprs bulletin = Bulletin OILB / srop, International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palaearctic Region Section, Avignon, France, 1997 no. v. 20,5 (OCLC : ocm45523124)
[8] Outils d’aide à la conception de systèmes de production maraîchers urbains optimisés pour la vente en circuits courts et de proximité, Theses, Communauté Universite Grenoble Alpes, 1 (2018) https://hal.archives-ouvertes.fr/tel-01741853
[9] Conception de systèmes de production agricoles urbains optimisés pour la vente en circuits courts et de proximité, ROADEF 2015, 16ème congrès de la Société Française de Recherche Opérationnelle et d’Aide à la Décision (2015)
[10] Inclusion of facilitation into ecological theory, TRENDS in Ecology and Evolution, Volume 18 (2003), pp. 15-29
[11] Comparison Study of Swarm Intelligence Techniques for the Annual Crop Planning Problem, IEEE Transactions on Evolutionary Computation, Volume 18 (2014) no. 2, pp. 258-268 | DOI
[12] Étude des pratiques agroforestières associant des arbres fruitiers de haute tige à des cultures ou des pâtures (2000) (Rapport de fin de contrat rédigé à la demande du Ministère de l’Aménagement et du Teritoire et de l’Environnement)
[13] Effects of Shelter on Plant Water Use, Agriculture, Ecosystems and Environment, Volume 393 (1988), pp. 393-402 | DOI
[14] Modelling optimal crop sequences using network flows, Agricultural Systems, Volume 94 (2007) no. 2, pp. 566-572 | DOI
[15] A method for exploring sustainable development options at farm scale : a case study for vegetable farms in South Uruguay, Agricultural Systems, Volume 86 (2005) no. 1, pp. 29-51 http://www.sciencedirect.com/science/article/pii/S0308521X04001532 | DOI
[16] Separating the effects of crop rotation from weed management on weed density and diversity, Weed science, Volume 47 (1999), pp. 729-735 | DOI
[17] L’agroforesterie : une voie de diversification écologique de l’agriculture européenne ?, Cahier d’étude DEMETER - Économie et Stratégies agricoles, 2006
[18] Agroforesterie : Des arbres et des cultures, Editions France Agricole, 2ème éd., 2011
[19] Models to support cropping plan and crop rotation decisions. A review, Agron. Sustain. Dev, Volume 32 (2012) no. (2), pp. 567-580 | DOI
[20] Silvoarable Systems in Europe - Past, Present and Future Prospects, Agroforestry Systems, Volume 67 (2006), pp. 29-50 | DOI
[21] Silvoarable Systems in Europe - Past, Present and Future Prospects, Agroforestry Systems, Volume 67 (2006) no. 1, pp. 29-50 | DOI
[22] Mixed integer linear programming models for optimal crop selection, Computers & Operations Research, Volume 81 (2017), pp. 26-39 http://www.sciencedirect.com/science/article/pii/S0305054816303033 | DOI
[23] Multi-stage linear programming model for optimizing cropping plan decisions under the new Common Agricultural Policy, Land Use Policy, Volume 48 (2015), pp. 515-524 http://www.sciencedirect.com/science/article/pii/S0264837715002008 | DOI
[24] Mathematical models in farm planning : a survey, Operations Research, Volume 35 (1987) no. 5, pp. 641-666 | DOI
[25] Responses of slug numbers and slug damage to crops in a silvoarable agroforestry landscape, Journal of applied ecology, Volume 35 (1998), pp. 252-260 | DOI
[26] Fuzzy multiple-criteria decision making for crop area planning in Narmada river basin, Agricultural Systems, Volume 63 (2000) no. 1, pp. 1-18 | DOI
[27] Crop succession requirements in agricultural production planning, European Journal of Operational Research, Volume 166 (2005) no. 2, pp. 406-429 | DOI
[28] The Economics of Rotations with Farm and Production Policy Applications, Journal of Farm Economics, Volume 30 (1948) no. 4, pp. 645-664 https://www.jstor.org/stable/1232783 | DOI
[29] Simplified Presentation and Logical Aspects of Linear Programming Technique, Journal of Farm Economics, Volume 36 (1954) no. 5, pp. 1035-1048 https://www.jstor.org/stable/1234313 | DOI
[30] Streuobst : a traditional agroforestry system as a model for agroforestry development in temperate Europe, Agroforestry Systems, Volume 42 (1998), pp. 61-80 | DOI
[31] Plants Helping Plants., BioScience JSTOR, Volume 38 (1988), pp. 34-40 | DOI
[32] A model of crop planning under uncertainty in agricultural management, International Journal of Production Economics, Volume 81-82 (2003), pp. 555-558 http://www.sciencedirect.com/science/article/pii/S0925527302002839 | DOI
[33] Interspecific interactions in temperate agroforestry, New Vistas in Agroforestry, Springer, 2004, pp. 237-255 | DOI
[34] Agroforesterie moderne en Suisse (2010) http://www.bioactualites.ch/fileadmin/documents/bafr/production-vegetale/1279197071_Kaeser_A_ART_Bericht_725_F.pdf (Technical report)
[35] Adaptation of a crop sequence indicator based on a land parcel management system, Agriculture, Ecosystems & Environment, Volume 112 (2006) no. 4, pp. 324-334 http://www.sciencedirect.com/science/article/pii/S0167880905003828 | DOI
[36] Designing cropping systems from nature, Agron. Sustain. Dev, Volume 32 (2012), pp. 15-29 | DOI
[37] Designing mixed fruit-vegetable cropping systems by integer quadratic programming, Acta Horticulturae (2017), pp. 265-274 | DOI
[38] Designing mixed fruit-vegetable cropping systems by integer quadratic programming, 8th International Congress on Environmental Modelling and Software (iEMSs), Volume 2 (2016), 8 p. pages | HAL
[39] A Mixed Integer Programming Reformulation of the Mixed Fruit-Vegetable Crop Allocation Problem, Advances in Artificial Intelligence : From Theory to Practice (Lecture Notes in Computer Science) (2017), pp. 237-250 https://link.springer.com/chapter/10.1007/978-3-319-60045-1_26
[40] Experiences with farmer oriented linear programming for crop planning, Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie, Volume 25 (1977) no. 1, pp. 17-30 | DOI
[41] An integrated expert system for optimal crop planning, Agricultural Systems, Volume 45 (1994) no. 1, pp. 73-92 http://www.sciencedirect.com/science/article/pii/S0308521X9490281X | DOI
[42] Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties, Agricultural Water Management, Volume 166 (2016), pp. 53-69 http://www.sciencedirect.com/science/article/pii/S0378377415301840 | DOI
[43] Root distribution of trees and crops : competition and/or complementarity, CAB International, 1996, pp. 221-257
[44] Above and below ground interactions in agroforestry systemss, Agroforestry Systems, Volume 45 (1991), pp. 45-57
[45] Diurnal Light Interception and a Computer Model of Light Interception by Hedgerow Apple Orchards, Journal of Applied Ecology, Volume 14 (1997), pp. 601-614 | DOI
[46] The Benders Decomposition Algorithm : A Literature Review, European Journal of Operational Research (2016), pp. 801-817
[47] A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes, European Journal of Operational Research, Volume 245 (2015), pp. 581-590 http://www.sciencedirect.com/science/article/pii/S0377221715002428 | DOI
[48] Modelling a nationwide crop planning problem using a multiple criteria decision making tool, Computers & Industrial Engineering, Volume 42 (2002) no. 2, pp. 541-553 http://www.sciencedirect.com/science/article/pii/S0360835202000220 | DOI
[49] An improved evolutionary algorithm for solving multi-objective crop planning models, Computers and Electronics in Agriculture, Volume 68 (2009) no. 2, pp. 191-199 http://www.sciencedirect.com/science/article/pii/S0168169909000969 | DOI
[50] Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India, Agricultural Water Management, Volume 83 (2006) no. 3, pp. 209-220 http://www.sciencedirect.com/science/article/pii/S0378377405003859 | DOI
[51] Biodiversity and pest management in orchard systems. A review, Agronomy for Sustainable Development, Volume 30 (2010), pp. 139-152 | DOI
[52] A new BDI agent architecture based on the belief theory. Application to the modelling of cropping plan decision-making, International environmental modelling and software society (iEMSs) (2012) | HAL
[53] Cropping pattern planning under water supply from multiple sources, Irrigation and Drainage Systems, Volume 20 (2006) no. 1, pp. 57-68 | DOI
[54] Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach, Plant and Soil, Volume 251 (2003) no. 1, pp. 1-11 | DOI
[55] Root Development Of Vegetable Crops Ist Edn., Mcgraw-Iill Book Co, ; London, 1927
Cité par Sources :