L’article rappelle le contexte scientifique de l’émergence de Prolog et évoque les échanges fructueux entre Alain Colmerauer à Marseille et Robert Kowalski à Edimbourg qui ont donné naissance à la Programmation Logique.
The article recalls the scientific context of Prolog’s emergence and recalls the fruitful exchanges between Alain Colmerauer in Marseille and Robert Kowalski in Edinburgh, which gave birth to Logic Programming.
Accepté le :
Publié le :
Mots clés : Prolog, Programmation Logique.
Robert Kowalski 1
@article{ROIA_2024__5_2-3_31_0, author = {Robert Kowalski}, title = {The {Marseille-Edinburgh} {Connection}}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {31--37}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {5}, number = {2-3}, year = {2024}, doi = {10.5802/roia.70}, language = {en}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.70/} }
TY - JOUR AU - Robert Kowalski TI - The Marseille-Edinburgh Connection JO - Revue Ouverte d'Intelligence Artificielle PY - 2024 SP - 31 EP - 37 VL - 5 IS - 2-3 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.70/ DO - 10.5802/roia.70 LA - en ID - ROIA_2024__5_2-3_31_0 ER -
%0 Journal Article %A Robert Kowalski %T The Marseille-Edinburgh Connection %J Revue Ouverte d'Intelligence Artificielle %D 2024 %P 31-37 %V 5 %N 2-3 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.70/ %R 10.5802/roia.70 %G en %F ROIA_2024__5_2-3_31_0
Robert Kowalski. The Marseille-Edinburgh Connection. Revue Ouverte d'Intelligence Artificielle, Hommage à Alain Colmerauer, Volume 5 (2024) no. 2-3, pp. 31-37. doi : 10.5802/roia.70. https://roia.centre-mersenne.org/articles/10.5802/roia.70/
[1] The logician’s folly, the (European) AISB Bull., British Comput. Soc., 1972
[2] The sharing of structure in theorem proving programs, Machine Intelligence, Volume 7 (1972), pp. 101-116 | Zbl
[3] Les Systèmes Q ou un Formalisme pour Analyser et Synthétiser des Phrases sur Ordinateur (1969) (Technical report)
[4] The Semantics of Predicate Logic as a Programming Language, Journal of the ACM, Volume 23 (1976) no. 4, pp. 733-742 | DOI | Zbl
[5] Absys1: An incremental compiler for assertions: An introduction, Machine Intelligence, Volume 4 (1969), pp. 423-429 | Zbl
[6] Application of theorem-proving to problem-solving, Proceedings of First International Joint Conference on Artificial Intelligence, IJCAI’69, Washington D.C. (1969), pp. 219-239
[7] Theorem proving by resolution as a basis for question-answering systems, Machine Intelligence, Volume 4 (1969), pp. 183-205 | Zbl
[8] Lecture notes on automatic theorem-proving, 1971 (Metamathematics Unit Memo 40)
[9] PLANNER: a language for proving theorems in robots, Proceedings of First International Joint Conference on Artificial Intelligence, IJCAI ’69,Washington D.C. (1969), pp. 295-301 | DOI
[10] The Predicate Calculus as a Programming Language (abstract), Proceedings of the First MFCS Symposium, Jablonna, Poland (1972)
[11] Semantic trees in automated theorem-proving, Machine Intelligence, Volume 4 (1969), pp. 87-102 | Zbl
[12] Linear resolution with selection function, Artif. Intell., Volume 2 (1971) no. 3, pp. 227-260 | DOI | Zbl
[13] Mechanical theorem-proving by model elimination, Journal of the ACM, Volume 15 (1968) no. 2, pp. 236-251 | DOI | Zbl
[14] Some philosophical problems from the standpoint of artificial intelligence, Machine Intelligence, Volume 4 (1969), pp. 463-502 | Zbl
[15] Definite clause grammars for language analysis – a survey of the formalism and a comparison with augmented transition networks, Artif. Intell., Volume 13 (1980) no. 3, pp. 231-278 | DOI | Zbl
[16] Automatic deduction with hyper-resolution, International Journal of Computing and Mathematics, Volume 1 (1965), pp. 227-234 | DOI | Zbl
[17] A machine-oriented logic based on the resolution principle, Journal of the ACM, Volume 12 (1965) no. 1, pp. 23-41 | DOI | Zbl
[18] Définition et traitement de l’égalité formelle en démonstration automatique, thèse de 3e cycle, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II, France (1972)
[19] Outline of a Mathematical Theory of Computation, Proceedings of the the Fourth Annual Princeton Conference on Information Sciences and Systems (1970), pp. 169-176
[20] PROGRAMMAR: A language for writing grammars, AI Memo 181, MIT, Cambridge, 1969
[21] Understanding natural language, Cognitive psychology, Volume 3 (1972) no. 1, pp. 1-191 | DOI
Cité par Sources :