The Marseille-Edinburgh Connection
Revue Ouverte d'Intelligence Artificielle, Hommage à Alain Colmerauer, Volume 5 (2024) no. 2-3, pp. 31-37.

L’article rappelle le contexte scientifique de l’émergence de Prolog et évoque les échanges fructueux entre Alain Colmerauer à Marseille et Robert Kowalski à Edimbourg qui ont donné naissance à la Programmation Logique.

The article recalls the scientific context of Prolog’s emergence and recalls the fruitful exchanges between Alain Colmerauer in Marseille and Robert Kowalski in Edinburgh, which gave birth to Logic Programming.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/roia.70
Keywords: Prolog, Logic Programming.
Mots clés : Prolog, Programmation Logique.

Robert Kowalski 1

1 Department of computing Imperial College, London (UK)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ROIA_2024__5_2-3_31_0,
     author = {Robert Kowalski},
     title = {The {Marseille-Edinburgh} {Connection}},
     journal = {Revue Ouverte d'Intelligence Artificielle},
     pages = {31--37},
     publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle},
     volume = {5},
     number = {2-3},
     year = {2024},
     doi = {10.5802/roia.70},
     language = {en},
     url = {https://roia.centre-mersenne.org/articles/10.5802/roia.70/}
}
TY  - JOUR
AU  - Robert Kowalski
TI  - The Marseille-Edinburgh Connection
JO  - Revue Ouverte d'Intelligence Artificielle
PY  - 2024
SP  - 31
EP  - 37
VL  - 5
IS  - 2-3
PB  - Association pour la diffusion de la recherche francophone en intelligence artificielle
UR  - https://roia.centre-mersenne.org/articles/10.5802/roia.70/
DO  - 10.5802/roia.70
LA  - en
ID  - ROIA_2024__5_2-3_31_0
ER  - 
%0 Journal Article
%A Robert Kowalski
%T The Marseille-Edinburgh Connection
%J Revue Ouverte d'Intelligence Artificielle
%D 2024
%P 31-37
%V 5
%N 2-3
%I Association pour la diffusion de la recherche francophone en intelligence artificielle
%U https://roia.centre-mersenne.org/articles/10.5802/roia.70/
%R 10.5802/roia.70
%G en
%F ROIA_2024__5_2-3_31_0
Robert Kowalski. The Marseille-Edinburgh Connection. Revue Ouverte d'Intelligence Artificielle, Hommage à Alain Colmerauer, Volume 5 (2024) no. 2-3, pp. 31-37. doi : 10.5802/roia.70. https://roia.centre-mersenne.org/articles/10.5802/roia.70/

[1] B. Anderson; P. Hayes The logician’s folly, the (European) AISB Bull., British Comput. Soc., 1972

[2] R. Boyer; J. Moore The sharing of structure in theorem proving programs, Machine Intelligence, Volume 7 (1972), pp. 101-116 | Zbl

[3] A. Colmerauer Les Systèmes Q ou un Formalisme pour Analyser et Synthétiser des Phrases sur Ordinateur (1969) (Technical report)

[4] M. van Emdem; R. Kowalski The Semantics of Predicate Logic as a Programming Language, Journal of the ACM, Volume 23 (1976) no. 4, pp. 733-742 | DOI | Zbl

[5] J. M. Foster; E. W. Elcock Absys1: An incremental compiler for assertions: An introduction, Machine Intelligence, Volume 4 (1969), pp. 423-429 | Zbl

[6] C. Green Application of theorem-proving to problem-solving, Proceedings of First International Joint Conference on Artificial Intelligence, IJCAI’69, Washington D.C. (1969), pp. 219-239

[7] C. Green Theorem proving by resolution as a basis for question-answering systems, Machine Intelligence, Volume 4 (1969), pp. 183-205 | Zbl

[8] P. J. Hayes; R. A. Kowalski Lecture notes on automatic theorem-proving, 1971 (Metamathematics Unit Memo 40)

[9] C. Hewitt PLANNER: a language for proving theorems in robots, Proceedings of First International Joint Conference on Artificial Intelligence, IJCAI ’69,Washington D.C. (1969), pp. 295-301 | DOI

[10] R. A. Kowalski The Predicate Calculus as a Programming Language (abstract), Proceedings of the First MFCS Symposium, Jablonna, Poland (1972)

[11] R. A. Kowalski; P. J. Hayes Semantic trees in automated theorem-proving, Machine Intelligence, Volume 4 (1969), pp. 87-102 | Zbl

[12] R. A. Kowalski; D. Kuehner Linear resolution with selection function, Artif. Intell., Volume 2 (1971) no. 3, pp. 227-260 | DOI | Zbl

[13] D. W. Loveland Mechanical theorem-proving by model elimination, Journal of the ACM, Volume 15 (1968) no. 2, pp. 236-251 | DOI | Zbl

[14] J. P. McCarthy; J. Hayes Some philosophical problems from the standpoint of artificial intelligence, Machine Intelligence, Volume 4 (1969), pp. 463-502 | Zbl

[15] F. C. Pereira; D. H. Warren Definite clause grammars for language analysis – a survey of the formalism and a comparison with augmented transition networks, Artif. Intell., Volume 13 (1980) no. 3, pp. 231-278 | DOI | Zbl

[16] J. A. Robinson Automatic deduction with hyper-resolution, International Journal of Computing and Mathematics, Volume 1 (1965), pp. 227-234 | DOI | Zbl

[17] J. A. Robinson A machine-oriented logic based on the resolution principle, Journal of the ACM, Volume 12 (1965) no. 1, pp. 23-41 | DOI | Zbl

[18] P. Roussel Définition et traitement de l’égalité formelle en démonstration automatique, thèse de 3e cycle, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II, France (1972)

[19] D. Scott Outline of a Mathematical Theory of Computation, Proceedings of the the Fourth Annual Princeton Conference on Information Sciences and Systems (1970), pp. 169-176

[20] T. Winograd PROGRAMMAR: A language for writing grammars, AI Memo 181, MIT, Cambridge, 1969

[21] T. Winograd Understanding natural language, Cognitive psychology, Volume 3 (1972) no. 1, pp. 1-191 | DOI

Cité par Sources :