Revue Quverte
d'Intelligence
Artificielle

RoBERT KOWALSKI

The Marseille-Edinburgh Connection
Volume 5, n° 2-3 (2024), p. 31-37.

© Les auteurs, 2024.
Cet article est diffusé sous la licence

CRrEATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.

.4 La Revue Ouverte d’Intelligence Artificielle est membre du
’ » Centre Mersenne pour I’édition scientifique ouverte

MERSENNE e-ISSN : 2967-9672

https://doi.org/10.5802/roia.70
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
www.centre-mersenne.org

Revue Ouverte d’Intelligence Artificielle
Volume 5, n° 2-3, 2024, 31-37

The Marseille-Edinburgh
Connection

Robert Kowalski?

¢ Department of computing Imperial College, London (UK)
E-mail: rkowalski @imperial.ac.uk.

REésumE. — Larticle rappelle le contexte scientifique de I’émergence de Prolog et évoque
les échanges fructueux entre Alain Colmerauer a Marseille et Robert Kowalski a Edim-
bourg qui ont donné naissance a la Programmation Logique.

Mots-cLEs. — Prolog, Programmation Logique.

Alain Colmerauer left us three years ago, but he left behind an intellectual legacy
that will influence future generations for years to come.

Alain arrived at the University of Aix-Marseille Luminy in 1970 as a Maitre de
Conferences, the equivalent of an American Associate Professor. Before arriving in
Marseille, he had already achieved an international reputation for his PhD research
on compilers in Grenoble, and for his machine translation work at the University of
Montreal. Although he had an opportunity to join the Computer Science Department
at Stanford University, he preferred instead to join and lead the new Department of
Computer Science in Marseille. The decision was typical of his style: reaching out in
new directions, starting from the beginning, and following through to the end.

Soon after his arrival in Marseille, Alain attracted a strong team of research students,
including Robert Pasero and Philippe Roussel, to follow up the work he started on
automated question-answering in Montreal. Robert worked on the natural language side
of the system, and Philippe worked on automated reasoning for question-answering.

In contrast, although I was the same age as Alain, I did not complete my PhD until
1970. I arrived at the University of Edinburgh as a PhD student in the Metamathematics
Unit, headed by Bernard Meltzer, in October 1967, and I started to work on automated
theorem-proving. I had already studied some mathematical logic as a postgraduate
student at Stanford University, but I had virtually no background or interest in computer
science. Fortunately, Alan Robinson, the inventor of the resolution method of theorem-
proving [17], was spending his sabbatical in Bernard’s Unit, and I had privileged access
to all the latest and most relevant research in the field.

At that time, the University of Edinburgh was possibly the most active centre of
research in Artificial Intelligence outside of the USA. Most of the activity was in the
Department of Machine Intelligence and Perception, headed by Donald Michie, who
also founded the Machine Intelligence series of Workshops and Proceedings. Donald
and Bernard collaborated as editors of the Proceedings, and Bernard started the Journal
of Artificial Intelligence in 1970, becoming its first editor-in-chief.

mailto:r.kowalski@imperial.ac.uk

Robert Kowalski

The Machine Intelligence workshops attracted a wide range of Al researchers,
mainly from the UK and USA. However, the 4th Machine Intelligence Workshop in
1969 was exceptional. It contained papers on automated theorem-proving by Alan
Robinson and by such other leading researchers in the field as Dag Prawitz, Donald
Loveland and Larry Wos. It also included the famous paper, by John McCarthy and
Pat Hayes, introducing the situation calculus [14].

At the workshop, McCarthy’s PhD student, Cordell Green, presented his work
on the use of resolution for question-answering [7]. Foster and Elcock presented their
assertional programming language Absys [5]. Pat Hayes and I presented the application
of semantic trees as a method for “finding efficient rules of proof for mechanical
theorem-proving” [11]. Pat Hayes went on to focus on the further development of
semantic trees for his PhD thesis.

I was fortunate to meet and have discussions with many of these famous researchers.
I corresponded with Cordell Green about the proofs in his paper, with Donald Loveland
about the relationship between his model generation theorem-proving method and
linear resolution, and with Larry Wos about Horn clauses. But I worked most closely
with Pat Hayes, who joined the Metamathematics Unit as a PhD student at the same
time as [did. We started to write a book based on lecture notes for a postgraduate course
on automated theorem-proving [8]. The lecture notes were 105 pages long and were
published internally in March 1971 as Memo 40 of the Department of Computational
Logic, School of Artificial Intelligence, University of Edinburgh. Looking back at the
lecture notes now, I am amazed to see that they did not contain any examples, other
than purely symbolic examples without any meaning.

In the early days of research on automated theorem-proving, the focus was on
proving mathematical theorems. However, Cordell Green in his 1969 PhD thesis, and in
his 1969 IJCAI paper [6], showed that resolution theorem-proving could also be applied
to question-answering, robot planning and “automatic programming”. Unfortunately,
the theorem-proving systems available at that time were opaque and very inefficient.

Despite the inefficiency of Cordell’s resolution theorem-prover, his applications
attracted a lot of interest in the Al research community. However, they also created a lot
of opposition from researchers at MIT, who were advocating procedural, as opposed
to declarative, logic-based representations of knowledge and problem-solving. The
opposition was led by Seymour Papert, one of the developers of the Logo programming
language, and Marvin Minsky, the founding director of the MIT AI Lab. As a PhD
student under their supervision, Carl Hewitt developed the programming language
Planner, as a procedural representation of knowledge [9].

Planner became very influential through its use by another MIT PhD student, Terry
Winograd, who developed a natural language understanding program, SHRDLU, for
a toy blocks world, where a user could both ask questions about the state of the world
and issue commands to move blocks and change the state of the world [21]. SHRDLU
was implemented in a combination of Planner, Lisp and PROGRAMMAR, a parsing

—-32 -

The Marseille-Edinburgh Connection

system which interpreted grammars written in terms of programs [20]. Research on
resolution-based theorem-proving went into world-wide, sharp decline.

Pat Hayes was greatly influenced by these new developments. He came back from
one of his visits to John McCarthy at Stanford, disillusioned with resolution theorem-
proving. Among other outcomes of his visit, he wrote a joint paper with Bruce Anderson
on “The Logicians Folly” against the resolution uniform proof procedure paradigm [1].
He also wanted to rewrite most of our book. We agreed to abandon it instead.

I was not convinced that resolution was dead, believing that SL-resolution (lin-
ear resolution with selection function) addressed many of the same problems with
resolution theorem-proving that had been identified by the advocates of procedural
knowledge representation. As Donald Kuehner and I wrote in the conclusion section of
our 1971 SL-resolution paper [12], “the amenability of SL-resolution to the application
of heuristic methods suggests that, on these grounds alone, it is at least competitive
with theorem-proving procedures designed solely from heuristic considerations”.

Although I was convinced that the goal-oriented approach of SL-resolution could
achieve similar behaviour to procedural approaches, I was struggling to understand
how it could compete with procedural approaches to parsing and natural language
understanding. Moreover, I couldn’t understand why SHRDLU needed a separate
language, PROGRAMMAR, for representing and parsing grammars, when PLANNER
was supposed to be so powerful and so general. As a result, I began to investigate
the possibility of representing grammars in logical form and using SL-resolution for
parsing. These investigations proved to be useful when I later met Alain in the summer
of 1971.

Alain knew about Cordell Green’s work on question-answering; and, when he
learned about my work with Donald Kuehner on SL-resolution, he decided to inves-
tigate its use for the reasoning component of the natural language question-answering
system being developed in his group.

I was visiting relatives in Poland with my wife and three young daughters, when
Alain sent an invitation to Edinburgh, inviting me to visit him in Marseille. Donald
opened the letter and volunteered to go in my place. But he forwarded the letter to me in
Poland, and I excitedly diverted our return journey to Edinburgh, driving in our Austin
mini, with a detour via Marseille. Alain and his wife, Colette, generously invited us to
stay with them in their small apartment. When my family and I weren’t sleeping on the
floor of their living room, or partaking of Colette’s generous hospitality, Alain and I
exchanged ideas about theorem-proving and parsing in natural and formal languages.

I thought I knew a lot about resolution theorem-proving. But Alain knew all there
was to know about parsing formal and natural languages. Back in Edinburgh, I had been
working on a crude representation of grammars with explicit axioms of associativity
for string concatenation, inspired by the way a mathematician might define an algebra.
Alain immediately recognised the inefficiency inherent in using associativity to reason
about concatenation. He suggested, instead, formalising a graph representation of
strings, like the one used in his Q-Systems [3].

- 33

Robert Kowalski

In our excited exchange of ideas, we discovered amazing parallels between resolu-
tion theorem-proving and parsing grammars: Both employ declarative representations
of knowledge. Resolution employs logic, while parsers employ grammars. Both can
solve problems bottom-up (forwards) or top-down (backwards). Even more amazing,
when formal grammars are represented in formal logic, then hyper-resolution [16]
behaves as a bottom-up parser/generator, and SL-resolution behaves as a top-down
parser/generator. It is because of these discoveries in the summer of 1971 that 1971 is
sometimes given as the year that Prolog was born.

Our exchange of ideas lasted four days and much of four nights. It was not only a
meeting of minds, but a bonding of spirits and the beginning of a lasting friendship.
We were both born in 1941; but I was about three years behind him in my career.
We both were married with three daughters, and over the years our friendship grew to
include exchange visits between our families.

Alain invited me back to Marseille for a longer visit of approximately two months
in the summer of 1972. This time he arranged a nursery school for our two oldest
daughters, and an apartment for us in the lovely, unspoiled village of Cassis on the
other side of the mountain from the campus at Luminy. Although our discussions this
time did not have the same intensity as those of the previous year, partly because Alain
was busy with a heavy teaching load, it was during these two months that the idea of
using logic as a computer programming language was born.

I'had been asked by Alain to serve as external examiner for Philippe Roussel’s PhD,
which dealt with “formal equality” (characterised by the single axiom x = x) [18].
Philippe showed that many applications involving equality for which the traditional
axioms of equality are intolerably inefficient can be implemented more efficiently
using formal equality instead. This reminded me of the discussions I had with Alain
the previous summer, and it motivated me to look for other cases where a change of
representation could also lead to improved efficiency. Philippe, in turn, met with Alain
and reported back ideas that arose during their own conversations. By the end of the
summer of 1972, Alain’s group developed the first version of Prolog, and used it to
implement a natural language question-answering system, while I reported an abstract
of my own findings at the Mathematical Foundations of Computer Science Conference
in Poland [10].

It is impossible for me to disentangle our different contributions to the idea of
programming in logic. But, in general terms, my ideas were more theoretical and per-
haps more philosophical than Alain’s. Alain once even referred to them as “poetical”,
in a sense that I'm sure was intended to be complementary. Alain’s ideas were more
practical than mine, and were based on a deeper understanding of the computer science
issues involved. These days our joint discussions and discoveries would probably have
resulted in joint publications. But in those days communication between researchers
based in different countries were primarily conducted by post, which did not encour-
age the production of joint publications. Moreover, Alain was not driven by a need to
publish his work. He was driven by a need to produce practical results underpinned by
sound theoretical principles.

—34—

The Marseille-Edinburgh Connection

To get a sense of Alain’s approach to research and research publication, type his
name into Google Scholar. With the exception of his 1973 technical report, Un sys-
teme de communication homme-machine en francais, co-authored with Henri Kanoui,
Robert Pasero and Philippe Roussel, his 1993 book, Constraint Logic Programming,
co-edited with Frédéric Benhamou, and his 1996 article, The birth of Prolog, co-
authored with Philippe, the remaining seven of his ten most highly cited publications
are single-authored. Moreover, looking into the content of his publications, you will get
an appreciation of his style, which was to drill deeply into the topic of his study, take
all the related work he could find into consideration, and allow no further distractions.

When I returned to Edinburgh from my two-month visit to Marseille in the summer
of 1972, I spread the word about logic programming. Although the reaction among
several of my colleagues was enthusiastic, Pat Hayes was not very happy. He believed
that I was taking credit for the thesis that “computation is controlled deduction,” which
he had been advocating in Edinburgh before my second visit to Marseille. On the
other hand, he did not like the Prolog approach of achieving efficiency by choosing an
appropriate logical representation of a problem, given the fixed behaviour of a given
theorem prover. He advocated instead the opposite approach of choosing a fixed logical
specification and obtaining the desired efficiency by varying the directions given to
control the behaviour of the theorem-prover.

In contrast, Donald Michie and Bernard Meltzer were both very enthusiastic. Don-
ald encouraged both his PhD student David H. D. Warren and his post-doctoral re-
searcher Maarten van Emden to work with me on this exciting new development.
David was primarily interested in using the Marseille implementation of Prolog and on
developing it further. Maarten was interested in studying the theoretical foundations
of Prolog and of logic programming more generally.

Maarten suggested that we investigate Dana Scott’s fixed point semantics for func-
tions [19] and see if we could adapt it to the semantics of logic programs [4]. When
we sent the paper to Alain, he commented that the three equivalent semantics defined
in the paper captured his own intuitions about the semantics of Prolog. It was one of
the nicest things that Alain ever said to me.

With the support of Bernard Meltzer, I obtained a small NATO research grant to
fund exchange visits between Edinburgh and Marseille. The NATO grant covered the
one-year period from October 1973 to October 1974. It supported a further two month
visit by me to Marseille, as well as visits by Philippe to Edinburgh and by David to
Marseille. Philippe learned about the structure sharing implementation of resolution
developed by Robert Boyer and J Moore in Edinburgh, and he incorporated a version of
structure sharing into the Prolog system in Marseille. David, in turn, obtained a wealth
of knowledge that allowed him to develop and implement the first Prolog compiler. He
also further developed Alain’s metamorphose grammars and with Fernando Pereira re-
named them “definite clause grammars” [15], which is how they are better known today.

I also benefited from the opportunity to discuss ideas with other researchers in
Edinburgh, including Alan Bundy, Rod Burstall, Michael Gordon, Robin Milner and

—-35 -

Robert Kowalski

Gordon Plotkin, and with visitors such as Aaron Sloman, Danny Bobrow and even
Carl Hewitt. Some of the visitors were especially attracted to the logic programming
idea. They included Luis Pereira from Lisbon, Sten Ake Tarnlund from Stockholm,
Peter Szeredi from Budapest and Maurice Bruynooghe from Leuven. I also travelled
in Europe, giving talks about these new developments.

But my time in Edinburgh was coming to an end, and I left in January 1975, to
become a Reader (the British equivalent of an Associate Professor) at Imperial College
in London. It was my turn to set up a research group, following in Alain’s footsteps.
London’s central location made a further contribution to the spread of Prolog.

As a step towards promoting Prolog and related work, I organised a workshop at
Imperial College in May 1976, using the term “logic programming” to describe the
topic of the workshop. The workshop lasted five days, and it had over 35 participants,
including such luminaries as Alan Robinson from the USA, and Alain and Philippe
from Marseille. This time, it was Alain who slept on my living room floor. For me,
the London workshop marked the transition of Prolog and logic programming from
childhood to adolescence, together with all of the growing up pains that such transitions
incur. Alain and I continued to collaborate, most notably during the first International
Logic Programming Conference in 1982 in Marseille, and during the EU-supported
Compulog Basic Research Action from 1989 to 1993. We also met from time to
time both at research meetings and on purely social occasions. Alain himself is no
longer with us, but his memory remains: an intellectual giant, a towering leader, and a
generous friend.

BIBLIOGRAPHY

[1] B. ANDERSON & P. HaYEs, “The logician’s folly”, in the (European) AISB Bull., British Comput. Soc.,
1972.
[2] R. BoYER & J. MoORE, “The sharing of structure in theorem proving programs”, Machine Intelligence
7 (1972), p. 101-116.
[3] A. COLMERAUER, “Les Systemes Q ou un Formalisme pour Analyser et Synthétiser des Phrases sur
Ordinateur”, Tech. report, Mimeo, Montréal, 1969.
[4] M. van EmpEM & R. KowaLski, “The Semantics of Predicate Logic as a Programming Language”,
Journal of the ACM 23 (1976), no. 4, p. 733-742.
[5] J. M. Foster & E. W. ELcock, “Absysl: An incremental compiler for assertions: An introduction”,
Machine Intelligence 4 (1969), p. 423-429.
[6] C.GRreeN, “Application of theorem-proving to problem-solving”, in Proceedings of First International
Joint Conference on Artificial Intelligence, IJCAI’69, Washington D.C., 1969, p. 219-239.
, “Theorem proving by resolution as a basis for question-answering systems”, Machine Intelli-
gence 4 (1969), p. 183-205.
[8] P.J.Haves & R. A. KowaLskl, “Lecture notes on automatic theorem-proving”, 1971, Metamathematics
Unit Memo 40.
[9] C. Hewirrt, “PLANNER: a language for proving theorems in robots”, in Proceedings of First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI *69,Washington D.C., 1969, p. 295-301.
[10] R. A. KowaLski, “The Predicate Calculus as a Programming Language (abstract)”, in Proceedings of
the First MFCS Symposium, Jablonna, Poland, 1972.
[11] R. A. KowaLski & P. J. HAYEs, “Semantic trees in automated theorem-proving”, Machine Intelligence
4 (1969), p. 87-102.

(71

—36 —

The Marseille-Edinburgh Connection

[12] R. A. KowaLski & D. KUEHNER, “Linear resolution with selection function”, Artif. Intell. 2 (1971),
no. 3, p. 227-260.

[13] D. W.LovELAND, “Mechanical theorem-proving by model elimination”, Journal of the ACM 15 (1968),
no. 2, p. 236-251.

[14] J. P. McCartHY & J. HAYES, “Some philosophical problems from the standpoint of artificial intelli-
gence”, Machine Intelligence 4 (1969), p. 463-502.

[15] F. C. PEreira & D. H. WARREN, “Definite clause grammars for language analysis — a survey of the
formalism and a comparison with augmented transition networks”, Artif. Intell. 13 (1980), no. 3,
p. 231-278.

[16] J. A. RoBiNsoN, “Automatic deduction with hyper-resolution”, International Journal of Computing
and Mathematics 1 (1965), p. 227-234.

, “A machine-oriented logic based on the resolution principle”, Journal of the ACM 12 (1965),
no. 1, p. 23-41.

[18] P. RousskL, “Définition et traitement de I’égalité formelle en démonstration automatique”, theése de
3¢ cycle, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille
II, France, 1972.

[19] D. Scorr, “Outline of a Mathematical Theory of Computation”, in Proceedings of the the Fourth
Annual Princeton Conference on Information Sciences and Systems, 1970, p. 169-176.

[20] T. WiNnoGrAD, “PROGRAMMAR: A language for writing grammars”, in Al Memo 181, MIT, Cam-
bridge, 1969.

, “Understanding natural language”, Cognitive psychology 3 (1972), no. 1, p. 1-191.

[17]

[21]

AsstrAcT. — The article recalls the scientific context of Prolog’s emergence and recalls
the fruitful exchanges between Alain Colmerauer in Marseille and Robert Kowalski in
Edinburgh, which gave birth to Logic Programming.

Keyworps. — Prolog, Logic Programming.

Manuscrit recu le 27 mai 2024, accepté le 12 juillet 2024.

- 37 —

	Bibliography

