Le partage de la route entre différents modes de déplacement tels que les véhicules légers, les poids lourds et les vélos génère de nombreux problèmes de sécurité routière. Une solution envisagée pour faciliter le partage de l’espace routier est un repositionnement du marquage latéral afin de laisser plus d’espace aux modes doux. Cependant, l’effet d’un changement du profil en travers de la route sur les comportements des conducteurs a été jusqu’ici peu étudié. Le projet PROFIL a eu pour objectif d’étudier cet impact dans différentes situations (véhicule instrumenté, simulateur de conduite, simulateur de trafic). Dans ce cadre, nous proposons le modèle LFM (Lateral Force Model), prenant en compte les effets longitudinaux et latéraux du profil en travers au sein de la voie de circulation. Nous montrons que ce modèle, fondé sur IDM (Intelligent Driver Model) dans sa composante longitudinale, reproduit de façon effective les effets de la largeur de la voie en circulation libre, en situation de croisement de véhicules, en situation de dépassement de deux-roues non-motorisés et en virage selon les données recueillies dans des expérimentations en situation réelle et en simulateur.
Sharing the road between different modes of transport such as light vehicles, heavy vehicles and bicycles involves many road safety problems. One solution considered to facilitate the sharing of road space is a repositioning of the side marking to allow more space for soft modes. However, the effect of a change in the profile across the road on driver behaviour has so far been little studied. The PROFIL project aimed to study this impact in different situations (instrumented vehicle, driving simulator, traffic simulator). In this context, we propose the Lateral Force Model (LFM), which takes into account the longitudinal and lateral effects of the cross-sectional profile within the traffic lane. We show that this model, based on the Intelligent Driver Model (IDM) in its longitudinal component, effectively reproduces the effects of lane and platform width in open traffic, vehicle crossing situations, overtaking of non-motorized two-wheelers and curves, based on data collected in real-life and simulator experiments.
Révisé le :
Accepté le :
Publié le :
Keywords: Multiagent systems, Traffic simulation, Behaviour models
Julien Saunier 1
@article{ROIA_2022__3_5-6_451_0, author = {Julien Saunier}, title = {Mod\`ele de comportement lat\'eral des v\'ehicules l\'egers fond\'e sur des forces}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {451--476}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {3}, number = {5-6}, year = {2022}, doi = {10.5802/roia.39}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.39/} }
TY - JOUR AU - Julien Saunier TI - Modèle de comportement latéral des véhicules légers fondé sur des forces JO - Revue Ouverte d'Intelligence Artificielle PY - 2022 SP - 451 EP - 476 VL - 3 IS - 5-6 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.39/ DO - 10.5802/roia.39 LA - fr ID - ROIA_2022__3_5-6_451_0 ER -
%0 Journal Article %A Julien Saunier %T Modèle de comportement latéral des véhicules légers fondé sur des forces %J Revue Ouverte d'Intelligence Artificielle %D 2022 %P 451-476 %V 3 %N 5-6 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.39/ %R 10.5802/roia.39 %G fr %F ROIA_2022__3_5-6_451_0
Julien Saunier. Modèle de comportement latéral des véhicules légers fondé sur des forces. Revue Ouverte d'Intelligence Artificielle, Post-actes des Journées Francophones sur les Systèmes Multi-Agents (JFSMA 2018-2019-2020), Volume 3 (2022) no. 5-6, pp. 451-476. doi : 10.5802/roia.39. https://roia.centre-mersenne.org/articles/10.5802/roia.39/
[1] , The 21st IEEE International Conference on Intelligent Transportation Systems (2018) https://elib.dlr.de/124092/ | DOI
[2] Dynamical model of traffic congestion and numerical simulation, Physical Review E, Volume 51 (1995), pp. 1035-1042 | DOI
[3] et al. Fundamentals of traffic simulation, ISOR, 145, Springer, 2010 | DOI
[4] Virtual lanes interest for motorcycles simulation (2007) (Technical report)
[5] Développement d’un modèle du conducteur automobile : De la modélisation cognitive à la simulation numérique, Ph. D. Thesis, Université Sciences et Technologies-Bordeaux I (2012)
[6] Car-following : a historical review, Transportation Research Part F : Traffic Psychology and Behaviour, Volume 2 (1999) no. 4, pp. 181-196 | DOI
[7] Comprendre le trafic routier. Méthodes et calculs, Certu, 2010
[8] , Proceedings of the International Conference on Social Modeling and Simulation, plus Econophysics Colloquium 2014 (2015), pp. 265-274 | DOI
[9] Mesure de la trajectoire en situation réelle de conduite et comparaison avec les comportements en simulateur de conduite (2017) (Technical report)
[10] ARCHISIM : A behavioral multi-actors traffic simulation model for the study of a traffic system including ITS aspects, International Journal of ITS Research (2007) no. 1, pp. p7-16
[11] Microscopic traffic flow simulator VISSIM, Fundamentals of traffic simulation, Springer, 2010, pp. 63-93 | DOI
[12] Surrogate safety measures from traffic simulation models, Transportation Research Record : Journal of the Transportation Research Board (2003) no. 1840, pp. 104-115 | DOI
[13] The Ecological Approach to Visual Perception, Lawrence Erlbaum Associates, 1979
[14] A model for the structure of lane-changing decisions, Transportation Research Part B : Methodological, Volume 20 (1986) no. 5, pp. 403-414 | DOI
[15] Car following theory with lateral discomfort, Transportation Research Part B : Methodological, Volume 41 (2007) no. 7, pp. 722-735 | DOI
[16] Analyses of a continuum traffic flow model for a nonlane-based system, International Journal of Modern Physics C, Volume 25 (2014) no. 10, 1450045 | DOI | MR
[17] Social force model for pedestrian dynamics, Physical review E, Volume 51 (1995) no. 5, pp. 4282-4286 | DOI
[18] Generalized force model of traffic dynamics, Physical review E, Volume 58 (1998) no. 1, pp. 133-138 | DOI
[19] Expérimentation du principe de délégation GPU pour la simulation multiagent. Les boids de Reynolds comme cas d’étude, Revue d’Intelligence Artificielle, Volume 30 (2016) no. 1-2, pp. 109-132 | DOI
[20] State-of-the-art of vehicular traffic flow modelling, Proceedings of the Institution of Mechanical Engineers, Part I : Journal of Systems and Control Engineering, Volume 215 (2001) no. 4, pp. 283-303 | DOI
[21] Speed perception and actual speed in a driving simulator and real-world : A validation study, Transportation research part F : traffic psychology and behaviour, Volume 62 (2019), pp. 637-650 | DOI
[22] General lane-changing model MOBIL for car-following models, Transportation Research Record : Journal of the Transportation Research Board (2007) no. 1999, pp. 86-94 | DOI
[23] Modeling heterogeneous traffic flow, Transportation Research Record : Journal of the Transportation Research Board (1999) no. 1678, pp. 234-241 | DOI
[24] Microscopic Modeling of Traffic Flow : Investigation of Collision Free Vehicle Dynamics, Ph. D. Thesis, Université de Cologne (1998)
[25] , Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems (2013), pp. 151-158
[26] Evaluation of traffic safety, based on micro-level behavioural data : Theoretical framework and first implementation, Accident Analysis & Prevention, Volume 42 (2010) no. 6, pp. 1637-1646 | DOI
[27] New approach to modeling mixed traffic containing motorcycles in urban areas, Transportation Research Record : Journal of the Transportation Research Board (2009) no. 2140, pp. 195-205 | DOI
[28] Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps, Nonlinear Dynamics, Volume 80 (2015) no. 1-2, pp. 227-238 | DOI | Zbl
[29] , fourth international symposium on Highway Capacity, Hawaii (2000)
[30] PROFIL – Profil de la ROute comme Facteur d’Influence de la Lisibilité de l’infrastructure et son effet sur la trajectoire – Expérimentations sur simulateur de conduite (2017) (Technical report)
[31] The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers’ behavioral adaptations, Accident Analysis & Prevention, Volume 104 (2017), pp. 65-73 | DOI
[32] A critical view of driver behavior models : What do we know, what should we do, Human behavior and traffic safety (1985), pp. 485-520 | DOI
[33] A cellular automaton model for freeway traffic, Journal de physique I, Volume 2 (1992) no. 12, pp. 2221-2229 | DOI
[34] A simplified theory of kinematic waves in highway traffic, Part I : General theory, Transportation Research Part B : Methodological, Volume 27 (1993) no. 4, pp. 281-287 | DOI
[35] An overview of agent-based traffic simulators, Transportation Research Interdisciplinary Perspectives, Volume 12 (2021), 100486 https://www.sciencedirect.com/science/article/pii/S2590198221001913 | DOI
[36] Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width, Physics Letters A, Volume 375 (2011) no. 30, pp. 2823-2827 | DOI | Zbl
[37] , Intelligent Transportation Systems, 1999. Proceedings. 1999 IEEE/IEEJ/JSAI International Conference on (1999), pp. 656-661 | DOI
[38] PROFIL – Profil de la ROute comme Facteur d’Influence de la Lisibilité de l’infrastructure et son effet sur la trajectoire -Etat de l’art (2016) (Technical report)
[39] Impact of narrower lane width : Comparison between fixed-base simulator and real data, Transportation research record, Volume 2138 (2009) no. 1, pp. 112-119 | DOI
[40] , Distribution et Décentralisation – Vingt-sixièmes journées francophones sur les systèmes multi-agents, JFSMA 2018, Métabief, France, 10-12 Octobre 2018. (2018), pp. 11-20
[41] , International conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris, France, May 5-9, 2014 (2014), pp. 645-652
[42] Vers un modèle de comportements de véhicules lourds en utilisant une méthode incrémentale basée sur la vérification et l’hystérésis : le modèle ArchiPL, Ph. D. Thesis, Université Pierre et Marie Curie-Paris VI (2014)
[43] Congested traffic states in empirical observations and microscopic simulations, Physical review E, Volume 62 (2000) no. 2, pp. 1805-1824 | DOI
[44] Delays, inaccuracies and anticipation in microscopic traffic models, Physica A : Statistical Mechanics and its Applications, Volume 360 (2006) no. 1, pp. 71-88 | DOI
[45] Modélisation et simulation à base d’agents : exemples commentés, outils informatiques et questions théoriques, Dunod, 2008
[46] Speed choice and steering behavior in curve driving, Human factors, Volume 38 (1996) no. 3, pp. 434-441 | DOI
[47] Infrastructures for the environment of multiagent systems, Autonomous Agents and Multi-Agent Systems, Volume 14 (2007) no. 1, pp. 49-60 | DOI
[48] Architectural design of a situated multiagent system for controlling automatic guided vehicles, International Journal of Agent-Oriented Software Engineering, Volume 2 (2008) no. 1, pp. 90-128 | DOI
[49] Environment as a First-class Abstraction in Multi-Agent Systems, Autonomous Agents and Multi-Agent Systems, Volume 14 (2007) no. 1, pp. 5-30 (Special Issue on Environments for Multi-agent Systems) | DOI
[50] DTALite : A queue-based mesoscopic traffic simulator for fast model evaluation and calibration, Cogent Engineering, Volume 1 (2014) no. 1, 961345 | DOI
Cité par Sources :