La simulation de systèmes multi-robots nécessite l’intégration des composantes robotique et réseau au sein d’un même simulateur. Pour accélérer le développement d’un tel logiciel, il semble efficace de réutiliser les outils existants dans les communautés robotique et réseau, mais la fusion de deux simulateurs présente des défis structurels qu’il faut surmonter afin d’obtenir une simulation « réaliste » d’un système multi-robots. Dans cet état de l’art, nous étudions les « co-simulateurs » qui abordent cette problématique et détaillons les défis auxquels il faut répondre pour créer un co-simulateur utile et performant. Nous présentons aussi nos travaux en cours pour la création d’un co-simulateur dédié aux systèmes multi-robots aériens.
Simulation of multi-robots systems require the integration of both the robotic and network components. Leveraging the existing tools from each community seems an evidence, but merging two completely different simulators proves challenging. This paper is a state of the art study on co-simulators that tackle this problematic, and we provide details on the challenges arising when one wants to create an efficient and useful co-simulator. We also present our ongoing work toward the creation of such a simulator.
Keywords: Multi-robots systems, co-simulation, communication networks
Théotime Balaguer 1 ; Olivier Simonin 1 ; Isabelle Guerin-Lassous 2 ; Isabelle Fantoni 3
@article{ROIA_2024__5_4_63_0, author = {Th\'eotime Balaguer and Olivier Simonin and Isabelle Guerin-Lassous and Isabelle Fantoni}, title = {\'Etat de l{\textquoteright}art sur la co-simulation robotique et r\'eseau des syst\`emes multi-robots}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {63--89}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {5}, number = {4}, year = {2024}, doi = {10.5802/roia.87}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.87/} }
TY - JOUR AU - Théotime Balaguer AU - Olivier Simonin AU - Isabelle Guerin-Lassous AU - Isabelle Fantoni TI - État de l’art sur la co-simulation robotique et réseau des systèmes multi-robots JO - Revue Ouverte d'Intelligence Artificielle PY - 2024 SP - 63 EP - 89 VL - 5 IS - 4 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.87/ DO - 10.5802/roia.87 LA - fr ID - ROIA_2024__5_4_63_0 ER -
%0 Journal Article %A Théotime Balaguer %A Olivier Simonin %A Isabelle Guerin-Lassous %A Isabelle Fantoni %T État de l’art sur la co-simulation robotique et réseau des systèmes multi-robots %J Revue Ouverte d'Intelligence Artificielle %D 2024 %P 63-89 %V 5 %N 4 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.87/ %R 10.5802/roia.87 %G fr %F ROIA_2024__5_4_63_0
Théotime Balaguer; Olivier Simonin; Isabelle Guerin-Lassous; Isabelle Fantoni. État de l’art sur la co-simulation robotique et réseau des systèmes multi-robots. Revue Ouverte d'Intelligence Artificielle, Post-actes des Journées Francophones sur les Systèmes Multi-Agents (JFSMA 2023), Volume 5 (2024) no. 4, pp. 63-89. doi : 10.5802/roia.87. https://roia.centre-mersenne.org/articles/10.5802/roia.87/
[1] CORNET 2.0 : A Co-Simulation Middleware for Robot Networks, 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), 2022, pp. 684-690 | DOI
[2] CORNET : A Co-Simulation Middleware for Robot Networks, 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), 2020, pp. 245-251 | DOI
[3] A Co-Simulation Framework for Communication and Control in Autonomous Multi-Robot Systems, 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 11087-11094 | DOI
[4] FlyNetSim : An Open Source Synchronized UAV Network Simulator based on ns-3 and Ardupilot, Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM ’18), Association for Computing Machinery, New York, NY, USA, 2018, p. 37–45 | DOI
[5] Flying Ad-Hoc Networks (FANETs) : A survey, Ad Hoc Networks, Volume 11 (2013) no. 3, pp. 1254-1270 | DOI
[6] Extension of Flocking Models to Environments with Obstacles and Degraded Communications, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 9139-9145 | DOI
[7] ROS-NetSim : A Framework for the Integration of Robotic and Network Simulators, IEEE Robotics and Automation Letters, Volume 6 (2021) no. 2, pp. 1120-1127 | DOI
[8] Stonefish : An Advanced Open-Source Simulation Tool Designed for Marine Robotics, With a ROS Interface, OCEANS 2019 MTS/IEEE, 2019, pp. 1-6 | DOI
[9] A Review of Physics Simulators for Robotic Applications, IEEE Access, Volume 9 (2021), pp. 51416-51431 | DOI
[10] SynchroSim : An Integrated Co-simulation Middleware for Heterogeneous Multi-robot System, 2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS), IEEE Computer Society, Los Alamitos, CA, USA, 2022, pp. 334-341 | DOI
[11] A Reliable and Low Latency Synchronizing Middleware for Co-simulation of a Heterogeneous Multi-Robot Systems (2022) (https://arxiv.org/abs/2211.05359)
[12] A Novel ROS2 QoS Policy-Enabled Synchronizing Middleware for Co-Simulation of Heterogeneous Multi-Robot Systems, 32nd International Conference on Computer Communications and Networks (ICCCN), 2023, pp. 1-10 | DOI
[13] COMSOL Multiphysics® : Finite element software for electrochemical analysis. A mini-review, Electrochemistry Communications, Volume 40 (2014), pp. 71-74 | DOI
[14] An integrated framework for the realistic simulation of multi-UAV applications, Computers & Electrical Engineering, Volume 74 (2019), pp. 196-209 | DOI
[15] How to pick a mobile robot simulator : A quantitative comparison of CoppeliaSim, Gazebo, MORSE and Webots with a focus on accuracy of motion, Simulation Modelling Practice and Theory, Volume 120 (2022), 102629 | DOI
[16] SOFA : A Multi-Model Framework for Interactive Physical Simulation, Soft Tissue Biomechanical Modeling for Computer Assisted Surgery (Yohan Payan, ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 283-321 | DOI
[17] Mininet-WiFi : Emulating software-defined wireless networks, 11th International Conference on Network and Service Management (CNSM), 2015, pp. 384-389 | DOI
[18] The Player/Stage Project : Tools for Multi-Robot and Distributed Sensor Systems, 11th International Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal, June 2003, 2003, pp. 317-323
[19] Survey on Unmanned Aerial Vehicle Networks for Civil Applications : A Communications Viewpoint, IEEE Communications Surveys & Tutorials, Volume 18 (2016) no. 4, pp. 2624-2661 | DOI
[20] Effects of Detail in Wireless Network Simulation (2001) (https://ant.isi.edu/~johnh/PAPERS/Heidemann01a.pdf)
[21] Detail Comparison of Network Simulators, IJSER, Volume 5 (2014), pp. 203-218
[22] Design and use paradigms for Gazebo, an open-source multi-robot simulator, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Volume 3, 2004, pp. 2149-2154 | DOI
[23] RoboNetSim : An integrated framework for multi-robot and network simulation, Robotics and Autonomous Systems, Volume 61 (2013) no. 5, pp. 483-496 | DOI
[24] SwarmSimX : Real-Time Simulation Environment for Multi-robot Systems, Simulation, Modeling, and Programming for Autonomous Robots (I. Noda; N. Ando; D. Brugali; J.J. Kuffner, eds.) (Lecture Notes in Computer Science), Volume 7628, Springer, Berlin, Heidelberg, 2012 | DOI
[25] UUV Simulator : A Gazebo-based package for underwater intervention and multi-robot simulation, OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1-8 | DOI
[26] AVENS – A Novel Flying Ad Hoc Network Simulator with Automatic Code Generation for Unmanned Aircraft System, Hawaii International Conference on System Sciences, 2017 | DOI
[27] LARISSA : Layered architecture model for interconnection of systems in UAS, 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 20-31 | DOI
[28] OpenFlow : enabling innovation in campus networks, SIGCOMM Comput. Commun. Rev., Volume 38 (2008) no. 2, p. 69–74 | DOI
[29] A Tutorial on UAVs for Wireless Networks : Applications, Challenges, and Open Problems, IEEE Communications Surveys & Tutorials, Volume 21 (2019) no. 3, pp. 2334-2360 | DOI
[30] ARGoS : a modular, parallel, multi-engine simulator for multi-robot systems, Swarm Intelligence, Volume 6 (2012), p. 271–295 | DOI
[31] The ns-3 Network Simulator, Modeling and Tools for Network Simulation (K. Wehrle; M. Güneş; J. Gross, eds.), Springer, Berlin, Heidelberg, 2010, pp. 13-34 | DOI
[32] V-REP : A versatile and scalable robot simulation framework, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 1321-1326 | DOI
[33] AirSim : High-Fidelity Visual and Physical Simulation for Autonomous Vehicles, Field and Service Robotics, Springer International Publishing, Cham, 2018, pp. 621-635 | DOI
[34] CPS-Sim : Co-Simulation for Cyber-Physical Systems with Accurate Time Synchronization, IFAC-PapersOnLine, Volume 51 (2018) no. 23, pp. 70-75 (7th IFAC Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2018) | DOI | Zbl
[35] An overview of the OMNeT++ simulation environment, Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops (Simutools ’08), ICST, Brussels, 2008, 60, 10 pages
[36] Theory of Modeling and Simulation, Academic Press, 2000
[37] CUSCUS : An integrated simulation architecture for distributed networked control systems, 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2017, pp. 287-292 | DOI
Cité par Sources :