L’IA symbolique et le dépassement de la logique classique
Revue Ouverte d'Intelligence Artificielle, Hommage à Alain Colmerauer, Volume 5 (2024) no. 2-3, pp. 161-176.

La programmation logique et la représentation des connaissances ont constitué deux courants de recherche importants en intelligence artificielle qui se sont développés dans les 50 dernières années avec des préoccupations largement différentes, mais avec cependant des points de rencontre, en particulier sur le raisonnement non-monotone, ou sur des logiques multi-valuées. C’est ce que ce modeste article se propose de revisiter, principalement autour de liens et de complémentarités avec la logique floue et la logique possibiliste, dans une perspective plus historique que technique.

Logic programming and knowledge representation have been two important streams of research in artificial intelligence that have developed in the last 50 years with largely different concerns, but with some points of convergence, in particular on non-monotonic reasoning, or on multi-valued logics. This is what this modest article proposes to revisit, mainly around links and complementarities with fuzzy logic and possibilistic logic, in a more historical than technical perspective.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/roia.77
Mot clés : Programmation logique, ASP, représentation des connaissances, raisonnement non-monotone, conditionnelle, règle si - alors, règles à seuil, logiques tri-valuées, logique floue, logique possibiliste, contrainte flexible, histoire de l’IA
Keywords: Logic programming, answer set programming, knowledge representation, non-monotonic reasoning, conditional statement, if-then rule, threshold rule, tri-valued logics, fuzzy logic, possibilistic logic, flexible constraint, history of AI

Henri Prade 1

1 IRIT, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9 (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ROIA_2024__5_2-3_161_0,
     author = {Henri Prade},
     title = {L{\textquoteright}IA symbolique et le d\'epassement de la logique classique},
     journal = {Revue Ouverte d'Intelligence Artificielle},
     pages = {161--176},
     publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle},
     volume = {5},
     number = {2-3},
     year = {2024},
     doi = {10.5802/roia.77},
     language = {fr},
     url = {https://roia.centre-mersenne.org/articles/10.5802/roia.77/}
}
TY  - JOUR
AU  - Henri Prade
TI  - L’IA symbolique et le dépassement de la logique classique
JO  - Revue Ouverte d'Intelligence Artificielle
PY  - 2024
SP  - 161
EP  - 176
VL  - 5
IS  - 2-3
PB  - Association pour la diffusion de la recherche francophone en intelligence artificielle
UR  - https://roia.centre-mersenne.org/articles/10.5802/roia.77/
DO  - 10.5802/roia.77
LA  - fr
ID  - ROIA_2024__5_2-3_161_0
ER  - 
%0 Journal Article
%A Henri Prade
%T L’IA symbolique et le dépassement de la logique classique
%J Revue Ouverte d'Intelligence Artificielle
%D 2024
%P 161-176
%V 5
%N 2-3
%I Association pour la diffusion de la recherche francophone en intelligence artificielle
%U https://roia.centre-mersenne.org/articles/10.5802/roia.77/
%R 10.5802/roia.77
%G fr
%F ROIA_2024__5_2-3_161_0
Henri Prade. L’IA symbolique et le dépassement de la logique classique. Revue Ouverte d'Intelligence Artificielle, Hommage à Alain Colmerauer, Volume 5 (2024) no. 2-3, pp. 161-176. doi : 10.5802/roia.77. https://roia.centre-mersenne.org/articles/10.5802/roia.77/

[1] T. Alsinet; L. Godo A complete calculus for possibilistic logic programming with fuzzy propositional variables, Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence (UAI’00), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000), pp. 1-10 | DOI

[2] I. Baaj; D. Dubois; F. Faux; H. Prade; A. Rico; O. Strauss Réseau de neurones et logique  : un cadre qualitatif, 31e Rencontres francophones sur la Logique Floue et ses Applications (LFA 2022), Cépaduès, Toulouse (2022), pp. 127-134

[3] I. Baaj; J.-P. Poli; W. Ouerdane; N. Maudet Min-max inference for possibilistic rule-based system, Proc. IEEE 30th Int. Conf. on Fuzzy Systems (Fuzz-IEEE’21), Luxembourg, July 11-14 (2021) | DOI

[4] I. Baaj; J.-P. Poli; W. Ouerdane; N. Maudet Representation of Explanations of Possibilistic Inference Decisions, Symbolic and Quantitative Approaches to Reasoning with Uncertainty (J. Vejnarová; N. Wilson, eds.) (Lecture Notes in Computer Science), Volume 12897, Springer International Publishing (2021), pp. 513-527 | DOI | Zbl

[5] K. Bauters; S. Schockaert; M. De Cock; D. Vermeir Characterizing and extending answer set semantics using possibility theory, Theory and Practice of Logic Programming, Volume 15 (2015) no. 1, p. 79–116 | DOI | Zbl

[6] M. Beldjehem The fennec system, Proceedings of the 1994 ACM Symposium on Applied Computing (H. Berghel; T. Hlengl; J. E. Urban, eds.) (SAC ’94), Association for Computing Machinery (1994), p. 126–130 | DOI

[7] S Benferhat; D. Dubois; H. Prade Possibilistic logic : From nonmonotonicity to logic programming, Proc. 2nd Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’93), Granada, Nov. 8-10 (M. Clarke; R. Kruse; S. Moral, eds.) (Lecture Notes in Computer Science), Volume 747, Springer Berlin Heidelberg (1993), pp. 17-24 | DOI

[8] S. Benferhat; D. Dubois; H. Prade Nonmonotonic reasoning, conditional objects and possibility theory, Artif. Intell., Volume 92 (1997) no. 1, pp. 259-276 | DOI | Zbl

[9] S. Benferhat; D. Dubois; H. Prade Practical handling of exception-tainted rules and independence information in possibilistic logic, Appl. Intell., Volume 9 (1998) no. 2, pp. 101-127 | DOI

[10] F. Benhamou; P. Bouvier; A. Colmerauer; H. Garetta; B. Giletta; J. L. Massat; G. A. Narboni; S. N’Dong; R. Pasero; J. F. Pique; T. Touraïvane; M. Van Caneghem; E. Vétillard Le manuel de Prolog IV (1996)

[11] H. A. Blair; V. S. Subrahmanian Paraconsistent logic programming, Theor. Comput. Sci., Volume 68 (1989) no. 2, pp. 135-154 | DOI | Zbl

[12] M. Blondeel; S. Schockaert; D. Vermeir; M. De Cock Fuzzy Answer Set Programming : An Introduction, Soft Computing : State of the Art Theory and Novel Applications (R. R. Yager; A. M. Abbasov; M. Z. Reformat; S. N. Shahbazova, eds.) (Studies in Fuzziness and Soft Computing), Volume 291, Springer, Berlin, Heidelberg, 2013, pp. 209-222 | DOI

[13] M. Blondeel; S. Schockaert; M. Vermeir Complexity of fuzzy answer set programming under Łukasiewicz semantics, Int. J. Approx. Reasoning, Volume 55 (2014) no. 9, pp. 1971-2003 | DOI | Zbl

[14] D. G. Bobrow (ed.) Special Issue on Non-Monotonic Reasoning Artificial Intelligence, Artif. Intell. (1980) no. (1,2), pp. 1-172

[15] Q. Brabant; M. Couceiro; D. Dubois; H. Prade; A. Rico Learning rule sets and Sugeno integrals for monotonic classification problems, Fuzzy Sets and Systems, Volume 401 (2020), pp. 4-37 | DOI | Zbl

[16] Nonmonotonic Reasoning. Essays Celebrating Its 30th Anniversary College Publications (G. Brewka; V. W. Marek; M. Truszczynski, eds.), Mathematical Logic and Foundations, 31, College Publications, 2011 | Zbl

[17] M. A. Cárdenas-Viedma; F. M. Galindo-Navarro PROlogic : A fuzzy temporal constraint PROLOG, Int. J. of Applied Mathematics, Volume 32 (2019) no. 4, pp. 677-719

[18] K. L. Clark Negation as Failure, Proc. Symp. on Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977 (H. Gallaire; J. Minker, eds.) (Advances in Data Base Theory), Plemum Press, New York (1977), pp. 293-322 | DOI

[19] A. Colmerauer Metamorphosis grammars, Natural Language Communication with Computers (L. Bolc, ed.) (Lecture Notes in Computer Science), Volume 63, Springer, Berlin, Heidelberg, 1978, pp. 133-188 | DOI

[20] A. Colmerauer Un sous-ensemble intéressant du français, RAIRO. Informatique théorique, Volume 13 (1979) no. 4, pp. 309-336 | DOI | Zbl

[21] A. Colmerauer; H. Kanoui; McA. Roussel; R. Pasero Un système de communication homme-machine en français (1973) (Rapport Groupe d’Intelligence Artificielle)

[22] A. Colmerauer; J. F. Pique About Natural Logic, Advances in Data Base Theory : Volume 1 (H. Gallaire; J. Minker; J.-M. Nicolas, eds.), Springer US, Boston, MA, 1981, pp. 343-365 (based on Proc. Workshop on Formal Bases for Data Bases, Dec. 12-14, 1979, CERT, Toulouse) | DOI

[23] Alain Colmerauer; Philippe Roussel The birth of Prolog, The Second ACM SIGPLAN Conference on History of Programming Languages, Cambridge, Massachusetts, USA (HOPL-II), Association for Computing Machinery (1993), p. 37–52 | DOI

[24] Roberto Confalonieri; H. Prade Using possibilistic logic for modeling qualitative decision : answer set programming algorithms, Int. J. Approx. Reasoning, Volume 55 (2014) no. 2, pp. 711-738 | DOI | Zbl

[25] V. Dahl Un système déductif d’interrogation de banques de données en espagnol, Thèse de 3e cycle, Groupe d’Intelligence Artificielle, Université d’Aix-Marseille (14 nov. 1977)

[26] V. Dahl Quantification in a three-valued logic for natural language question-answering systems, Proceedings of the 6th International Joint Conference on Artificial Intelligence – Volume 1 (IJCAI’79), Morgan Kaufmann Publishers Inc. (1979), p. 182–187 | DOI

[27] V. Dahl A three-valued logic for natural language computer applications, Proc. 10th IEEE Int. Symp. Multiple-Valued Logic, Evanston, IL, 3-5 June (1980)

[28] V. Dahl Two solutions for the negation problem, Proc. Logic Programming Workshop, Debrecen, Hungary (S.-A. Tarnlund, ed.) (1980), pp. 61-72

[29] V. Dahl Translating Spanish into logic through logic, American J. of Computational Linguistics (1981) no. 3, pp. 149-164 | DOI

[30] V. Dahl On database systems development through logic, ACM Trans. Database Syst., Volume 7 (1982) no. 1, pp. 102-123 | DOI

[31] V. Dahl Dimensions linguistiques de Prolog : le passé, le futur, 2024 (Revue Ouverte d’Intelligence Artificielle, ce numéro)

[32] V. Dahl; R. Sambuc Un système de banque de données en logique du premier ordre, en vue de sa consultation en langue naturelle (1976) (Rapport de DEA en Intelligence Artificielle)

[33] B. De Finetti La logique de la probabilité, Actes Congrès Int. de Philos. Scient., Paris 1935, Hermann et Cie Editions, Paris, 1936, p. IV1-IV9

[34] D. Dubois; H. Fargier; H. Prade Possibility theory in constraint satisfaction problems : Handling priority, preference and uncertainty, Appl. Intell., Volume 6 (1996) no. 4, pp. 287-309 | DOI

[35] D. Dubois; J. Lang; Prade H. Fuzzy sets in approximate reasoning, Part 2 : Logical approaches, Fuzzy Sets and Systems, Volume 40 (1991) no. 1, pp. 203-244 | DOI | Zbl

[36] D. Dubois; J. Lang; H. Prade Towards possibilistic logic programming, Proc. 8th Int. Conf. on Logic Programming (ICLP’91), Paris, June 24-28 (K. Furukawa, ed.), MIT Press (1991), pp. 581-595

[37] D. Dubois; J. Lang; H. Prade Possibilistic logic, Handbook of Logic in Artificial Intelligence and Logic Programming, (Vol. 3) : Nonmonotonic Reasoning and Uncertain Reasoning (D. M. Gabbay; C. J. Hogger; J. A. Robinson; D. Nute, eds.), Oxford University Press, 1994, pp. 439-513 | DOI

[38] D. Dubois; H. Prade Conditioning, non-monotonic logic and non-standard uncertainty models, Conditional Logic in Expert Systems (I. R. Goodman; M. M. Gupta; H. T. Nguyen; G. S. Rogers, eds.), North-Holland, 1991, pp. 115-158

[39] D. Dubois; H. Prade Conditional objects as nonmonotonic consequence relationships, IEEE Trans. on Syst., Man & Cybern., Volume 24 (1994) no. 12, pp. 1724-1740 | DOI | Zbl

[40] D. Dubois; H. Prade From possibilistic rule-based systems to machine learning, Proc. 14th Int. Conf. Scalable Uncert. Management (SUM’2020) (Lecture Notes in Computer Science), Volume 12322, Springer, Cham (2020), pp. 35-51 | DOI | Zbl

[41] D. Dubois; H. Prade; A. Rico The logical encoding of Sugeno integrals, Fuzzy Sets and Systems, Volume 241 (2014), pp. 61-75 | DOI | Zbl

[42] D. Dubois; H. Prade; S. Schockaert Règles et métarègles en théorie des possibilités. De la logique possibiliste à la programmation par ensembles-réponses, Revue d’Intelligence Artificielle, Volume 26 (2012) no. 1-2, pp. 63-83 | DOI

[43] D. Dubois; H. Prade; S. Schockaert Extending Answer Set Programming using Generalized Possibilistic Logic, Proceedings of the Joint Ontology Workshops 2015 Episode 1 : The Argentine Winter of Ontology co-located with the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 25-27, 2015 (O. Papini; S. Benferhat; L. Garcia; M.-L. Mugnier; E. L. Fermé; T. Meyer; R. Wassermann; T. Hahmann; K. Baclawski; A. Krisnadhi; P. Klinov; Borgo S.; O. Kutz; Porello D., eds.) (CEUR Workshop Proceedings), Volume 1517, CEUR-WS.org (2015)

[44] D. Dubois; H. Prade; S. Schockaert Generalized possibilistic logic : Foundations and applications to qualitative reasoning about uncertainty, Artif. Intell., Volume 252 (2017), pp. 139-174 | DOI | Zbl

[45] S. Dutta A temporal logic for uncertain events and an outline of a possible implementation in an extension of PROLOG, Proc. 4th Conf. on Uncertainty in Artificial Intelligence (UAI’88) Minneapolis, July 10-12 (L. Kanal; J. Lemmer; T. Levitt; R. Shachter, eds.) (1988), pp. 90-97

[46] H. Farreny; H. Prade Explications de raisonnements dans l’incertain, Revue d’Intelligence Artificielle, Volume 4 (1990) no. 2, pp. 43-75

[47] M. Fitting Bilattices and the semantics of logic programming, J. of Logic Programming, Volume 11 (1991), pp. 91-116 | DOI | Zbl

[48] M. Fitting; M. Ben-Jacob Stratified and three-valued logic programming semantics, Proc. 5th Int. Conf. and Symp. on Logic Programming (ICLP/SLP’88), Seattle, Aug. 15-19 1988 (R. A. Kowalski; K. A. Bowen, eds.), MIT Press (1988), pp. 1054-1069

[49] S. Ghosh-Dastidar; H. Adeli Spiking neural networks, Int. J. of Neural Syst., Volume 19 (2009), pp. 295-308 | DOI

[50] P. J. Iranzo; C. Rubio-Manzano; Gallardo-Casero J. BousiProlog : A Prolog extension language for flexible query answering, Electron. Notes Theor. Comput. Sci., Volume 248 (2009), pp. 131-147 | DOI

[51] M. Ishizuka; N. Kanai Prolog-ELF incorporating fuzzy logic, Proc. 9th Int. Joint Conf. on Artificial Intelligence (IJCAI’85), Los Angeles, Aug. 18-23 (A. K. Joshi, ed.), Morgan Kaufmann (1985), pp. 701-703

[52] M. Ishizuka; N. Kanai Prolog-ELF incorporating fuzzy logic, New Gener. Comput., Volume 3 (1985) no. 4, pp. 479-486 | DOI

[53] E. L. Keenan On semantically based grammar, Linguistic Inquiry, Volume 3 (1972) no. 4, pp. 413-461

[54] F. Klawonn; R. Kruse A Łukasiewicz logic based Prolog, Mathware & Soft Computing, Volume 1 (1994), pp. 5-29

[55] R. A. Kowalski Algorithm = Logic + control, Commun. ACM, Volume 22 (1979) no. 7, pp. 424-436 | DOI | Zbl

[56] R. A. Kowalski; M. Van Emden The semantics of predicate logic as a programming language, J. Assoc. Comput Mach., Volume 23 (1976) no. 4, pp. 733-743 | DOI | Zbl

[57] S. Kraus; D. Lehmann; M. Magidor Nonmonotonic reasoning, preferential models and cumulative logics, Artificial Intellence, Volume 44 (1990) no. 1-2, pp. 167-207 | DOI | Zbl

[58] K. Kunen Negation in logic programming, J. Log. Program., Volume 4 (1987) no. 4, pp. 289-308 | DOI | Zbl

[59] R. C. T. Lee Fuzzy logic and the resolution principle, J. Assoc. Comput. Mach., Volume 19 (1972), pp. 109-119 | DOI | Zbl

[60] D. Lehmann; M. Magidor What does a conditional knowledge base entail ?, Artif. Intell., Volume 55 (1992) no. 1, pp. 1-60 | DOI | Zbl

[61] D.y. Li; D.b. Liu A fuzzy PROLOG database system, Research Studies Press, 1990, 426 pages

[62] V. Lifschitz What is Answer Set Programming ?, Proc. 23rd AAAI Conf. on Artificial Intelligence (AAAI’08), Chicago, July 13-17 (D. Fox; C. P. Gomes, eds.) (2008), pp. 1594-1597

[63] Léa Sombé, Group; P. Besnard; M.O. Cordier; D. Dubois; L. Farinas del Cerro; C. Froidevaux; Y. Moinard; H. Prade; C. Schwind; P. Siegel Reasoning under Incomplete Information in Artificial Intelligence : A Comparison of Formalisms Using a Single Example, Wiley, 1990 (Aussi, Int. J. of Intelligent Systems, 5, n° 4, 323–471)

[64] V. Marek; M. Truszczyńnski Stable models and an alternative logic programming paradigm, The Logic Programming Paradigm : a 25-Year Perspective (K. R. Apt; V. W. Marek; M. Truszczyński; D. S. Warren, eds.), Springer Verlag, Berlin, Heidelberg, 1999, pp. 375-398 | DOI | Zbl

[65] Panorama de l’Intelligence Artificielle – 3 volumes (P. Marquis; O. Papini; H. Prade, eds.), Cépaduès, 2014 ([Version anglaise mise à jour et augmentée  : A Guided Tour of Artificial Intelligence Research - 3 volumes, Springer, 2020]) | DOI | Zbl

[66] T. P. Martin; J. F. Baldwin; B. W. Pilsworth The implementation of Fprolog - A fuzzy Prolog interpreter, Fuzzy Sets and Systems, Volume 23 (1987) no. 1, pp. 119-129 | DOI | Zbl

[67] J. Minker An overview of nonmonotonic reasoning and logic programming, The J. of Logic Programming, Volume 17 (1993) no. 2–4, pp. 95-126 | DOI | Zbl

[68] M. Mukaidono; Z.l. Shen; L.y. Ding Fundamentals of fuzzy Prolog, Int. J. Approx. Reason., Volume 3 (1989) no. 2, pp. 179-193 | DOI | Zbl

[69] M. Mushthofa; S. Schockaert; M. De Cock Solving disjunctive fuzzy answer set programs, Proc. 13th Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), Lexington, KY, Sept. 27-30, 2015 (F. Calimeri; G. Ianni; M. Truszczynski, eds.) (Lecture Notes in Computer Science), Volume 9345, Springer (2015), pp. 453-466 | DOI | Zbl

[70] M. Mushthofa; S. Schockaert; M. De Cock Fuzzy Answer Set Programming : From theory to practice, Beyond Traditional Probabilistic Data Processing Techniques : Interval, Fuzzy etc. Methods and Their Applications (O. Kosheleva; S. P. Shary; Gang Xiang; R. Zapatrin, eds.) (Studies in Computational Intelligence), Springer, Cham, 2020, p. 213–228 | DOI | Zbl

[71] M. Mushthofa; S. Schockaert; L.-H. Hung; K. Marchal; M. De Cock Modeling multi-valued biological interaction networks using fuzzy answer set programming, Fuzzy Sets and Syst., Volume 345 (2018), pp. 63-82 | DOI | Zbl

[72] G. A. Narboni On rule systems whose consistency can be locally maintained, AI Commun., Volume 26 (2013) no. 1, pp. 67-77 | DOI | Zbl

[73] G. A. Narboni Propagation properties of min-closed CSPs, Proc. 30th Int. Conf. on Logic Programming (ICLP’14), Vienna, July 19-22 2014, Technical Communication, Supplementary materials (2014), pp. 164-174 (https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S1471068414000581/resource/name/S1471068414000581sup001.pdf)

[74] P. Nicolas; L. Garcia; I. Stéphan Possibilistic stable models, Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), Edinburgh, July 30 - Aug. 5 2005 (L. Pack Kaelbling; A. Saffiotti, eds.) (2005), pp. 248-253

[75] P. Nicolas; L. Garcia; I. Stéphan; C. Lefèvre Possibilistic uncertainty handling for answer set programming, Ann. Math. Artif. Intell., Volume 47 (2006) no. 1–2, p. 139–181 | DOI | Zbl

[76] P. Nicolas; C. Lefèvre Possibilistic stable model computing, Proc. 3rd Int. Answer Set Programming Workshop (ASP’05), Bath, Sept. 27-29, 2005 (M. De Vos; A. Provetti, eds.) (CEUR Workshop Proceedings), Volume 142 (2005), pp. 203-215

[77] I. Niemelä Logic programs with stable model semantics as a constraint programming paradigm, Ann. Math. Artif. Intell., Volume 25 (1999) no. 3-4, p. 241–273 | Zbl

[78] J. C. Nieves; H. Lindgren Possibilistic nested logic programs and strong equivalence, Int. J. Approx. Reason., Volume 59 (2015), pp. 1-19 | DOI | Zbl

[79] J. C. Nieves; M. Osorio; U. Cortés Semantics for possibilistic disjunctive programs, Theory Pract. Log. Program., Volume 13 (2013) no. 1, pp. 33-70 | DOI | Zbl

[80] R. Pasero Un essai de communication sensée en langue naturelle (1976) (Rapport Interne)

[81] D. Pearce Equilibrium logic, Ann. Math. Artif. Intell., Volume 47 (2006) no. 1-2, pp. 3-41 | DOI | Zbl

[82] Sambuc Fonctions Φ-floues  : Applications à l’aide au diagnostic en pathologie thyroïdienne, Thèse d’exercice, Université d’Aix-Marseille 2, séc. (1975)

[83] E. Sanchez; R. Sambuc Relations floues. Fonctions Φ-floues. Application à l’aide au diagnostic en pathologie thyroïdienne, Proc. Medical Data Processing Symposium, Toulouse, March 2-5 1976 (M. Laudet; J. Anderson; F. Begon, eds.), Taylor and Francis (1976)

[84] T. Schiex; H. Fargier; G. Verfaillie Valued constraint satisfaction problems : Hard and easy problems, Proc. 14th Int. Joint Conf. on Artificial Intelligence – Volume 1, (IJCAI’95), Montréal, Aug. 20-25 1995, Morgan Kaufmann (1995), pp. 631-639

[85] C. Vaucheret; S. Guadarrama; S. Muñoz Fuzzy Prolog : A simple general implementation using CLP (), Logic for programming, artificial intelligence, and reasoning. 9th international conference, LPAR 2002, Tbilisi, Georgia, October 14–18, 2002. Proceedings, Springer, Berlin, 2002, pp. 450-463 | Zbl

[86] L. A. Zadeh Fuzzy sets, Inf. Control, Volume 8 (1965), pp. 338-353 | DOI | Zbl

[87] L. A. Zadeh The concept of a linguistic variable and its application to approximate reasoning. I, Inf. Sci., Volume 8 (1975), pp. 199-249 | DOI | Zbl

[88] Lotfi A. Zadeh Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern., Volume 3 (1973), pp. 28-44 | DOI | Zbl

[89] C. Zeitoun; Y. Pigenet; H. Leroux Quels neurones pour l’intelligence artificielle  ?, CNRS Le Journal, Volume 291 (2018), p. 30–38

Cité par Sources :