La programmation logique et la représentation des connaissances ont constitué deux courants de recherche importants en intelligence artificielle qui se sont développés dans les 50 dernières années avec des préoccupations largement différentes, mais avec cependant des points de rencontre, en particulier sur le raisonnement non-monotone, ou sur des logiques multi-valuées. C’est ce que ce modeste article se propose de revisiter, principalement autour de liens et de complémentarités avec la logique floue et la logique possibiliste, dans une perspective plus historique que technique.
Logic programming and knowledge representation have been two important streams of research in artificial intelligence that have developed in the last 50 years with largely different concerns, but with some points of convergence, in particular on non-monotonic reasoning, or on multi-valued logics. This is what this modest article proposes to revisit, mainly around links and complementarities with fuzzy logic and possibilistic logic, in a more historical than technical perspective.
Accepté le :
Publié le :
Keywords: Logic programming, answer set programming, knowledge representation, non-monotonic reasoning, conditional statement, if-then rule, threshold rule, tri-valued logics, fuzzy logic, possibilistic logic, flexible constraint, history of AI
Henri Prade 1
@article{ROIA_2024__5_2-3_161_0, author = {Henri Prade}, title = {L{\textquoteright}IA symbolique et le d\'epassement de la logique classique}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {161--176}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {5}, number = {2-3}, year = {2024}, doi = {10.5802/roia.77}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.77/} }
TY - JOUR AU - Henri Prade TI - L’IA symbolique et le dépassement de la logique classique JO - Revue Ouverte d'Intelligence Artificielle PY - 2024 SP - 161 EP - 176 VL - 5 IS - 2-3 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.77/ DO - 10.5802/roia.77 LA - fr ID - ROIA_2024__5_2-3_161_0 ER -
%0 Journal Article %A Henri Prade %T L’IA symbolique et le dépassement de la logique classique %J Revue Ouverte d'Intelligence Artificielle %D 2024 %P 161-176 %V 5 %N 2-3 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.77/ %R 10.5802/roia.77 %G fr %F ROIA_2024__5_2-3_161_0
Henri Prade. L’IA symbolique et le dépassement de la logique classique. Revue Ouverte d'Intelligence Artificielle, Hommage à Alain Colmerauer, Volume 5 (2024) no. 2-3, pp. 161-176. doi : 10.5802/roia.77. https://roia.centre-mersenne.org/articles/10.5802/roia.77/
[1] A complete calculus for possibilistic logic programming with fuzzy propositional variables, Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence (UAI’00), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000), pp. 1-10 | DOI
[2] Réseau de neurones et logique : un cadre qualitatif, 31e Rencontres francophones sur la Logique Floue et ses Applications (LFA 2022), Cépaduès, Toulouse (2022), pp. 127-134
[3] Min-max inference for possibilistic rule-based system, Proc. IEEE 30th Int. Conf. on Fuzzy Systems (Fuzz-IEEE’21), Luxembourg, July 11-14 (2021) | DOI
[4] Representation of Explanations of Possibilistic Inference Decisions, Symbolic and Quantitative Approaches to Reasoning with Uncertainty (J. Vejnarová; N. Wilson, eds.) (Lecture Notes in Computer Science), Volume 12897, Springer International Publishing (2021), pp. 513-527 | DOI | Zbl
[5] Characterizing and extending answer set semantics using possibility theory, Theory and Practice of Logic Programming, Volume 15 (2015) no. 1, p. 79–116 | DOI | Zbl
[6] The fennec system, Proceedings of the 1994 ACM Symposium on Applied Computing (H. Berghel; T. Hlengl; J. E. Urban, eds.) (SAC ’94), Association for Computing Machinery (1994), p. 126–130 | DOI
[7] Possibilistic logic : From nonmonotonicity to logic programming, Proc. 2nd Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’93), Granada, Nov. 8-10 (M. Clarke; R. Kruse; S. Moral, eds.) (Lecture Notes in Computer Science), Volume 747, Springer Berlin Heidelberg (1993), pp. 17-24 | DOI
[8] Nonmonotonic reasoning, conditional objects and possibility theory, Artif. Intell., Volume 92 (1997) no. 1, pp. 259-276 | DOI | Zbl
[9] Practical handling of exception-tainted rules and independence information in possibilistic logic, Appl. Intell., Volume 9 (1998) no. 2, pp. 101-127 | DOI
[10] Le manuel de Prolog IV (1996)
[11] Paraconsistent logic programming, Theor. Comput. Sci., Volume 68 (1989) no. 2, pp. 135-154 | DOI | Zbl
[12] Fuzzy Answer Set Programming : An Introduction, Soft Computing : State of the Art Theory and Novel Applications (R. R. Yager; A. M. Abbasov; M. Z. Reformat; S. N. Shahbazova, eds.) (Studies in Fuzziness and Soft Computing), Volume 291, Springer, Berlin, Heidelberg, 2013, pp. 209-222 | DOI
[13] Complexity of fuzzy answer set programming under Łukasiewicz semantics, Int. J. Approx. Reasoning, Volume 55 (2014) no. 9, pp. 1971-2003 | DOI | Zbl
[14] Special Issue on Non-Monotonic Reasoning Artificial Intelligence, Artif. Intell. (1980) no. (1,2), pp. 1-172
[15] Learning rule sets and Sugeno integrals for monotonic classification problems, Fuzzy Sets and Systems, Volume 401 (2020), pp. 4-37 | DOI | Zbl
[16] Nonmonotonic Reasoning. Essays Celebrating Its 30th Anniversary College Publications (G. Brewka; V. W. Marek; M. Truszczynski, eds.), Mathematical Logic and Foundations, 31, College Publications, 2011 | Zbl
[17] PROlogic : A fuzzy temporal constraint PROLOG, Int. J. of Applied Mathematics, Volume 32 (2019) no. 4, pp. 677-719
[18] Negation as Failure, Proc. Symp. on Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977 (H. Gallaire; J. Minker, eds.) (Advances in Data Base Theory), Plemum Press, New York (1977), pp. 293-322 | DOI
[19] Metamorphosis grammars, Natural Language Communication with Computers (L. Bolc, ed.) (Lecture Notes in Computer Science), Volume 63, Springer, Berlin, Heidelberg, 1978, pp. 133-188 | DOI
[20] Un sous-ensemble intéressant du français, RAIRO. Informatique théorique, Volume 13 (1979) no. 4, pp. 309-336 | DOI | Zbl
[21] Un système de communication homme-machine en français (1973) (Rapport Groupe d’Intelligence Artificielle)
[22] About Natural Logic, Advances in Data Base Theory : Volume 1 (H. Gallaire; J. Minker; J.-M. Nicolas, eds.), Springer US, Boston, MA, 1981, pp. 343-365 (based on Proc. Workshop on Formal Bases for Data Bases, Dec. 12-14, 1979, CERT, Toulouse) | DOI
[23] The birth of Prolog, The Second ACM SIGPLAN Conference on History of Programming Languages, Cambridge, Massachusetts, USA (HOPL-II), Association for Computing Machinery (1993), p. 37–52 | DOI
[24] Using possibilistic logic for modeling qualitative decision : answer set programming algorithms, Int. J. Approx. Reasoning, Volume 55 (2014) no. 2, pp. 711-738 | DOI | Zbl
[25] Un système déductif d’interrogation de banques de données en espagnol, Thèse de 3e cycle, Groupe d’Intelligence Artificielle, Université d’Aix-Marseille (14 nov. 1977)
[26] Quantification in a three-valued logic for natural language question-answering systems, Proceedings of the 6th International Joint Conference on Artificial Intelligence – Volume 1 (IJCAI’79), Morgan Kaufmann Publishers Inc. (1979), p. 182–187 | DOI
[27] A three-valued logic for natural language computer applications, Proc. 10th IEEE Int. Symp. Multiple-Valued Logic, Evanston, IL, 3-5 June (1980)
[28] Two solutions for the negation problem, Proc. Logic Programming Workshop, Debrecen, Hungary (S.-A. Tarnlund, ed.) (1980), pp. 61-72
[29] Translating Spanish into logic through logic, American J. of Computational Linguistics (1981) no. 3, pp. 149-164 | DOI
[30] On database systems development through logic, ACM Trans. Database Syst., Volume 7 (1982) no. 1, pp. 102-123 | DOI
[31] Dimensions linguistiques de Prolog : le passé, le futur, 2024 (Revue Ouverte d’Intelligence Artificielle, ce numéro)
[32] Un système de banque de données en logique du premier ordre, en vue de sa consultation en langue naturelle (1976) (Rapport de DEA en Intelligence Artificielle)
[33] La logique de la probabilité, Actes Congrès Int. de Philos. Scient., Paris 1935, Hermann et Cie Editions, Paris, 1936, p. IV1-IV9
[34] Possibility theory in constraint satisfaction problems : Handling priority, preference and uncertainty, Appl. Intell., Volume 6 (1996) no. 4, pp. 287-309 | DOI
[35] Fuzzy sets in approximate reasoning, Part 2 : Logical approaches, Fuzzy Sets and Systems, Volume 40 (1991) no. 1, pp. 203-244 | DOI | Zbl
[36] Towards possibilistic logic programming, Proc. 8th Int. Conf. on Logic Programming (ICLP’91), Paris, June 24-28 (K. Furukawa, ed.), MIT Press (1991), pp. 581-595
[37] Possibilistic logic, Handbook of Logic in Artificial Intelligence and Logic Programming, (Vol. 3) : Nonmonotonic Reasoning and Uncertain Reasoning (D. M. Gabbay; C. J. Hogger; J. A. Robinson; D. Nute, eds.), Oxford University Press, 1994, pp. 439-513 | DOI
[38] Conditioning, non-monotonic logic and non-standard uncertainty models, Conditional Logic in Expert Systems (I. R. Goodman; M. M. Gupta; H. T. Nguyen; G. S. Rogers, eds.), North-Holland, 1991, pp. 115-158
[39] Conditional objects as nonmonotonic consequence relationships, IEEE Trans. on Syst., Man & Cybern., Volume 24 (1994) no. 12, pp. 1724-1740 | DOI | Zbl
[40] From possibilistic rule-based systems to machine learning, Proc. 14th Int. Conf. Scalable Uncert. Management (SUM’2020) (Lecture Notes in Computer Science), Volume 12322, Springer, Cham (2020), pp. 35-51 | DOI | Zbl
[41] The logical encoding of Sugeno integrals, Fuzzy Sets and Systems, Volume 241 (2014), pp. 61-75 | DOI | Zbl
[42] Règles et métarègles en théorie des possibilités. De la logique possibiliste à la programmation par ensembles-réponses, Revue d’Intelligence Artificielle, Volume 26 (2012) no. 1-2, pp. 63-83 | DOI
[43] Extending Answer Set Programming using Generalized Possibilistic Logic, Proceedings of the Joint Ontology Workshops 2015 Episode 1 : The Argentine Winter of Ontology co-located with the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 25-27, 2015 (O. Papini; S. Benferhat; L. Garcia; M.-L. Mugnier; E. L. Fermé; T. Meyer; R. Wassermann; T. Hahmann; K. Baclawski; A. Krisnadhi; P. Klinov; Borgo S.; O. Kutz; Porello D., eds.) (CEUR Workshop Proceedings), Volume 1517, CEUR-WS.org (2015)
[44] Generalized possibilistic logic : Foundations and applications to qualitative reasoning about uncertainty, Artif. Intell., Volume 252 (2017), pp. 139-174 | DOI | Zbl
[45] A temporal logic for uncertain events and an outline of a possible implementation in an extension of PROLOG, Proc. 4th Conf. on Uncertainty in Artificial Intelligence (UAI’88) Minneapolis, July 10-12 (L. Kanal; J. Lemmer; T. Levitt; R. Shachter, eds.) (1988), pp. 90-97
[46] Explications de raisonnements dans l’incertain, Revue d’Intelligence Artificielle, Volume 4 (1990) no. 2, pp. 43-75
[47] Bilattices and the semantics of logic programming, J. of Logic Programming, Volume 11 (1991), pp. 91-116 | DOI | Zbl
[48] Stratified and three-valued logic programming semantics, Proc. 5th Int. Conf. and Symp. on Logic Programming (ICLP/SLP’88), Seattle, Aug. 15-19 1988 (R. A. Kowalski; K. A. Bowen, eds.), MIT Press (1988), pp. 1054-1069
[49] Spiking neural networks, Int. J. of Neural Syst., Volume 19 (2009), pp. 295-308 | DOI
[50] BousiProlog : A Prolog extension language for flexible query answering, Electron. Notes Theor. Comput. Sci., Volume 248 (2009), pp. 131-147 | DOI
[51] Prolog-ELF incorporating fuzzy logic, Proc. 9th Int. Joint Conf. on Artificial Intelligence (IJCAI’85), Los Angeles, Aug. 18-23 (A. K. Joshi, ed.), Morgan Kaufmann (1985), pp. 701-703
[52] Prolog-ELF incorporating fuzzy logic, New Gener. Comput., Volume 3 (1985) no. 4, pp. 479-486 | DOI
[53] On semantically based grammar, Linguistic Inquiry, Volume 3 (1972) no. 4, pp. 413-461
[54] A Łukasiewicz logic based Prolog, Mathware & Soft Computing, Volume 1 (1994), pp. 5-29
[55] Algorithm = Logic + control, Commun. ACM, Volume 22 (1979) no. 7, pp. 424-436 | DOI | Zbl
[56] The semantics of predicate logic as a programming language, J. Assoc. Comput Mach., Volume 23 (1976) no. 4, pp. 733-743 | DOI | Zbl
[57] Nonmonotonic reasoning, preferential models and cumulative logics, Artificial Intellence, Volume 44 (1990) no. 1-2, pp. 167-207 | DOI | Zbl
[58] Negation in logic programming, J. Log. Program., Volume 4 (1987) no. 4, pp. 289-308 | DOI | Zbl
[59] Fuzzy logic and the resolution principle, J. Assoc. Comput. Mach., Volume 19 (1972), pp. 109-119 | DOI | Zbl
[60] What does a conditional knowledge base entail ?, Artif. Intell., Volume 55 (1992) no. 1, pp. 1-60 | DOI | Zbl
[61] A fuzzy PROLOG database system, Research Studies Press, 1990, 426 pages
[62] What is Answer Set Programming ?, Proc. 23rd AAAI Conf. on Artificial Intelligence (AAAI’08), Chicago, July 13-17 (D. Fox; C. P. Gomes, eds.) (2008), pp. 1594-1597
[63] Reasoning under Incomplete Information in Artificial Intelligence : A Comparison of Formalisms Using a Single Example, Wiley, 1990 (Aussi, Int. J. of Intelligent Systems, 5, n° 4, 323–471)
[64] Stable models and an alternative logic programming paradigm, The Logic Programming Paradigm : a 25-Year Perspective (K. R. Apt; V. W. Marek; M. Truszczyński; D. S. Warren, eds.), Springer Verlag, Berlin, Heidelberg, 1999, pp. 375-398 | DOI | Zbl
[65] Panorama de l’Intelligence Artificielle – 3 volumes (P. Marquis; O. Papini; H. Prade, eds.), Cépaduès, 2014 ([Version anglaise mise à jour et augmentée : A Guided Tour of Artificial Intelligence Research - 3 volumes, Springer, 2020]) | DOI | Zbl
[66] The implementation of Fprolog - A fuzzy Prolog interpreter, Fuzzy Sets and Systems, Volume 23 (1987) no. 1, pp. 119-129 | DOI | Zbl
[67] An overview of nonmonotonic reasoning and logic programming, The J. of Logic Programming, Volume 17 (1993) no. 2–4, pp. 95-126 | DOI | Zbl
[68] Fundamentals of fuzzy Prolog, Int. J. Approx. Reason., Volume 3 (1989) no. 2, pp. 179-193 | DOI | Zbl
[69] Solving disjunctive fuzzy answer set programs, Proc. 13th Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), Lexington, KY, Sept. 27-30, 2015 (F. Calimeri; G. Ianni; M. Truszczynski, eds.) (Lecture Notes in Computer Science), Volume 9345, Springer (2015), pp. 453-466 | DOI | Zbl
[70] Fuzzy Answer Set Programming : From theory to practice, Beyond Traditional Probabilistic Data Processing Techniques : Interval, Fuzzy etc. Methods and Their Applications (O. Kosheleva; S. P. Shary; Gang Xiang; R. Zapatrin, eds.) (Studies in Computational Intelligence), Springer, Cham, 2020, p. 213–228 | DOI | Zbl
[71] Modeling multi-valued biological interaction networks using fuzzy answer set programming, Fuzzy Sets and Syst., Volume 345 (2018), pp. 63-82 | DOI | Zbl
[72] On rule systems whose consistency can be locally maintained, AI Commun., Volume 26 (2013) no. 1, pp. 67-77 | DOI | Zbl
[73] Propagation properties of min-closed CSPs, Proc. 30th Int. Conf. on Logic Programming (ICLP’14), Vienna, July 19-22 2014, Technical Communication, Supplementary materials (2014), pp. 164-174 (https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S1471068414000581/resource/name/S1471068414000581sup001.pdf)
[74] Possibilistic stable models, Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), Edinburgh, July 30 - Aug. 5 2005 (L. Pack Kaelbling; A. Saffiotti, eds.) (2005), pp. 248-253
[75] Possibilistic uncertainty handling for answer set programming, Ann. Math. Artif. Intell., Volume 47 (2006) no. 1–2, p. 139–181 | DOI | Zbl
[76] Possibilistic stable model computing, Proc. 3rd Int. Answer Set Programming Workshop (ASP’05), Bath, Sept. 27-29, 2005 (M. De Vos; A. Provetti, eds.) (CEUR Workshop Proceedings), Volume 142 (2005), pp. 203-215
[77] Logic programs with stable model semantics as a constraint programming paradigm, Ann. Math. Artif. Intell., Volume 25 (1999) no. 3-4, p. 241–273 | Zbl
[78] Possibilistic nested logic programs and strong equivalence, Int. J. Approx. Reason., Volume 59 (2015), pp. 1-19 | DOI | Zbl
[79] Semantics for possibilistic disjunctive programs, Theory Pract. Log. Program., Volume 13 (2013) no. 1, pp. 33-70 | DOI | Zbl
[80] Un essai de communication sensée en langue naturelle (1976) (Rapport Interne)
[81] Equilibrium logic, Ann. Math. Artif. Intell., Volume 47 (2006) no. 1-2, pp. 3-41 | DOI | Zbl
[82] Fonctions -floues : Applications à l’aide au diagnostic en pathologie thyroïdienne, Thèse d’exercice, Université d’Aix-Marseille 2, séc. (1975)
[83] Relations floues. Fonctions -floues. Application à l’aide au diagnostic en pathologie thyroïdienne, Proc. Medical Data Processing Symposium, Toulouse, March 2-5 1976 (M. Laudet; J. Anderson; F. Begon, eds.), Taylor and Francis (1976)
[84] Valued constraint satisfaction problems : Hard and easy problems, Proc. 14th Int. Joint Conf. on Artificial Intelligence – Volume 1, (IJCAI’95), Montréal, Aug. 20-25 1995, Morgan Kaufmann (1995), pp. 631-639
[85] Fuzzy Prolog : A simple general implementation using CLP (), Logic for programming, artificial intelligence, and reasoning. 9th international conference, LPAR 2002, Tbilisi, Georgia, October 14–18, 2002. Proceedings, Springer, Berlin, 2002, pp. 450-463 | Zbl
[86] Fuzzy sets, Inf. Control, Volume 8 (1965), pp. 338-353 | DOI | Zbl
[87] The concept of a linguistic variable and its application to approximate reasoning. I, Inf. Sci., Volume 8 (1975), pp. 199-249 | DOI | Zbl
[88] Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern., Volume 3 (1973), pp. 28-44 | DOI | Zbl
[89] Quels neurones pour l’intelligence artificielle ?, CNRS Le Journal, Volume 291 (2018), p. 30–38
Cité par Sources :