ABSG : une architecture d’agents d’inspiration sociale pour le problème de formation de coalitions
Revue Ouverte d'Intelligence Artificielle, Volume 4 (2023) no. 2, pp. 9-40.

Nous proposons une nouvelle architecture d’agent d’inspiration sociale adaptée à un système d’aide à la décision pour résoudre un problème de génération de structures de coalitions distribué avec chevauchements pour la conception de produits dans le cadre de l’économie circulaire. Cette architecture centrée agent permet aux agents de savoir avec quelles accointances former une coalition de manière à designer des produits répondant au mieux à un besoin utilisateur. Le mécanisme cognitif utilisé par l’architecture ABSG s’inspire des principes de l’attraction des sciences humaines et sociales.

We propose a new socially inspired agent architecture adapted to a decision support system to solve a distributed problem of coalitions structure generation for product design in the circular economy. This agent-centric architecture allows agents to know with whom to form a coalition. The cognitive mechanism used by the ABSG architecture is inspired by the principles of attraction from the human and social sciences. We argue that a multi-agent paradigm and a social approach are suitable solutions for solving open and dynamic coalition formation problems. We assess this assumption by using a study case from industry

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/roia.55
Mot clés : Formation de coalitions, système multi-agent, architecture d’agent.
Keywords: Isotriviality, log-selfishness, Machine.

Mickaël Bettinelli 1 ; Michel Occello 2 ; Damien Genthial 

1 Université Savoie Mont Blanc, LISTIC, Annecy, France
2 Grenoble Alpes University, LCIS, 26000 Valence, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ROIA_2023__4_2_9_0,
     author = {Micka\"el Bettinelli and Michel Occello and Damien Genthial},
     title = {ABSG~: une architecture d{\textquoteright}agents d{\textquoteright}inspiration sociale pour le probl\`eme de formation de coalitions},
     journal = {Revue Ouverte d'Intelligence Artificielle},
     pages = {9--40},
     publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle},
     volume = {4},
     number = {2},
     year = {2023},
     doi = {10.5802/roia.55},
     language = {fr},
     url = {https://roia.centre-mersenne.org/articles/10.5802/roia.55/}
}
TY  - JOUR
AU  - Mickaël Bettinelli
AU  - Michel Occello
AU  - Damien Genthial
TI  - ABSG : une architecture d’agents d’inspiration sociale pour le problème de formation de coalitions
JO  - Revue Ouverte d'Intelligence Artificielle
PY  - 2023
SP  - 9
EP  - 40
VL  - 4
IS  - 2
PB  - Association pour la diffusion de la recherche francophone en intelligence artificielle
UR  - https://roia.centre-mersenne.org/articles/10.5802/roia.55/
DO  - 10.5802/roia.55
LA  - fr
ID  - ROIA_2023__4_2_9_0
ER  - 
%0 Journal Article
%A Mickaël Bettinelli
%A Michel Occello
%A Damien Genthial
%T ABSG : une architecture d’agents d’inspiration sociale pour le problème de formation de coalitions
%J Revue Ouverte d'Intelligence Artificielle
%D 2023
%P 9-40
%V 4
%N 2
%I Association pour la diffusion de la recherche francophone en intelligence artificielle
%U https://roia.centre-mersenne.org/articles/10.5802/roia.55/
%R 10.5802/roia.55
%G fr
%F ROIA_2023__4_2_9_0
Mickaël Bettinelli; Michel Occello; Damien Genthial. ABSG : une architecture d’agents d’inspiration sociale pour le problème de formation de coalitions. Revue Ouverte d'Intelligence Artificielle, Volume 4 (2023) no. 2, pp. 9-40. doi : 10.5802/roia.55. https://roia.centre-mersenne.org/articles/10.5802/roia.55/

[1] Elliot Anshelevich; Wennan Zhu Ordinal approximation for social choice, matching, and facility location problems given candidate positions, ACM Transactions on Economics and Computation (TEAC), Volume 9 (2021) no. 2, 9, 24 pages | DOI | MR

[2] Mehdi Bennis; Meryem Simsek; Andreas Czylwik; Walid Saad; Stefan Valentin; Merouane Debbah When cellular meets WiFi in wireless small cell networks, IEEE communications magazine, Volume 51 (2013) no. 6, pp. 44-50 | DOI

[3] Mickael Bettinelli; Occello Michel; Genthial Damien Coalition Formation Problem : a Group Dynamics Inspired Swarming Method (2020) (HAL preprint https://hal.science/hal-02903531)

[4] Mickaël Bettinelli; Michel Occello; Damien Genthial; Daniel Brissaud A decision support framework for remanufacturing of highly variable products using a collective intelligence approach, Procedia CIRP, Volume 90 (2020), pp. 594-599 | DOI

[5] Mickaël Bettinelli Une approche d’intelligence collective pour la conception d’un système d’aide à la décision appliqué à l’économie circulaire, thèse de doctorat, Université Grenoble Alpes (2021)

[6] Filippo Bistaffa; Alessandro Farinelli; Jesús Cerquides; Juan Rodríguez-Aguilar; Sarvapali D Ramchurn Algorithms for graph-constrained coalition formation in the real world, ACM Transactions on Intelligent Systems and Technology (TIST), Volume 8 (2017) no. 4, 60, 24 pages | DOI

[7] Felix Brandt; Vincent Conitzer; Ulle Endriss; Jérôme Lang; Ariel D. Procaccia Handbook of computational social choice, Cambridge University Press, 2016 | DOI

[8] Narayan Changder; Samir Aknine; Sarvapali D. Ramchurn; Animesh Dutta ODSS : Efficient Hybridization for Optimal Coalition Structure Generation., AAAI, Volume 34 (2020), pp. 7079-7086 | DOI

[9] Maxence Delorme; Sergio García; Jacek Gondzio; Joerg Kalcsics; David Manlove; William Pettersson Stability in the hospitals/residents problem with couples and ties : Mathematical models and computational studies, Omega, Volume 103 (2020), 102386 | DOI

[10] Ayan Dutta; Vladimir Ufimtsev; Asai Asaithambi Correlation clustering based coalition formation for multi-robot task allocation, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (2019), pp. 906-913 | DOI

[11] Alessandro Farinelli; Manuele Bicego; Filippo Bistaffa; Sarvapali D Ramchurn A hierarchical clustering approach to large-scale near-optimal coalition formation with quality guarantees, Engineering Applications of Artificial Intelligence, Volume 59 (2017), pp. 170-185 | DOI

[12] Donelson R. Forsyth Group dynamics, Cengage Learning, 2010

[13] David Gale; Lloyd S. Shapley College admissions and the stability of marriage, The American Mathematical Monthly, Volume 69 (1962) no. 1, pp. 9-15 | DOI | MR | Zbl

[14] Veysel Gazi Swarm aggregations using artificial potentials and sliding-mode control, IEEE Transactions on Robotics, Volume 21 (2005) no. 6, pp. 1208-1214 | DOI

[15] David Dryden Henningsen; Mary Lynn Miller Henningsen; Paul Booth Predicting social and personal attraction in task groups, Groupwork, Volume 23 (2013) no. 1, pp. 73-93 | DOI

[16] Fabrício R Inácio; Douglas G Macharet; Luiz Chaimowicz PSO-based strategy for the segregation of heterogeneous robotic swarms, Journal of Computational Science, Volume 31 (2019), pp. 86-94 | DOI

[17] Pavel Janovsky; Scott A DeLoach Multi-agent simulation framework for large-scale coalition formation, 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), IEEE (2016), pp. 343-350 | DOI

[18] Flip Klijn; Ayşe Yazıcı A many-to-many ‘rural hospital theorem’, Journal of Mathematical Economics, Volume 54 (2014), pp. 63-73 | DOI | MR | Zbl

[19] M. Kumar; D. P. Garg; V. Kumar Segregation of Heterogeneous Units in a Swarm of Robotic Agents, IEEE Transactions on Automatic Control, Volume 55 (2010) no. 3, pp. 743-748 | DOI | MR | Zbl

[20] John E Laird; Clare Bates Congdon The Soar User’s Manual Version 9.5.0 (2015) (Technical report)

[21] Albert J. Lott; Bernice E. Lott Group cohesiveness as interpersonal attraction : A review of relationships with antecedent and consequent variables, Psychological bulletin, Volume 64 (1965) no. 4, pp. 259-309 | DOI

[22] David F. Manlove Hospitals/residents problem, Encyclopedia of Algorithms, Springer, Boston, MA, 2008, pp. 390-394 | DOI

[23] Tomasz Michalak; Talal Rahwan; Edith Elkind; Michael Wooldridge; Nicholas R. Jennings A hybrid exact algorithm for complete set partitioning, Artificial Intelligence, Volume 230 (2016), pp. 14-50 | DOI | MR | Zbl

[24] Maxime Morge; Antoine Nongaillard Affectation distribuée d’individus à des activités avec des préférences additivement séparables, Journées Francophones sur les Systèmes Multi-Agents, Cépaduès édition (2017), pp. 19-28

[25] Michael Mrissa; Lionel Médini; Jean-Paul Jamont; Nicolas Le Sommer; Jérôme Laplace An avatar architecture for the web of things, IEEE Internet Computing, Volume 19 (2015) no. 2, pp. 30-38 | DOI

[26] Ingo Muller; Ryszard Kowalczyk; Peter Braun Towards agent-based coalition formation for service composition, 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IEEE (2006), pp. 73-80 | DOI

[27] Theodore M. Newcomb Some varieties of interpersonal attraction, Festschrift for Gardner Murphy, Harper, 1960, pp. 171-182

[28] Stefan Poikonen; Bruce Golden; Edward A. Wasil A branch-and-bound approach to the traveling salesman problem with a drone, INFORMS Journal on Computing, Volume 31 (2019) no. 2, pp. 335-346 | DOI | MR | Zbl

[29] Awais Qasim; Areeba Bader; Adeel Munawar Efficient Contract-Net Protocol For Formal Modeling Of Multi-Agent Systems, International Journal of Computing and Digital Systems, Volume 10 (2021), pp. 805-816 | DOI

[30] Talal Rahwan; Tomasz P. Michalak; Michael Wooldridge; Nicholas R. Jennings Coalition structure generation : A survey, Artificial Intelligence, Volume 229 (2015), pp. 139-174 | DOI | MR | Zbl

[31] Talal Rahwan; Sarvapali D Ramchurn; Nicholas R Jennings; Andrea Giovannucci An anytime algorithm for optimal coalition structure generation, Journal of artificial intelligence research, Volume 34 (2009), pp. 521-567 | DOI | MR | Zbl

[32] Gabriel De O. Ramos; Burguillo Juan C.; Ana L.C. Bazzan Self-Adapting Coalition Formation Among Electric Vehicles in Smart Grids, 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems (2013), pp. 11-20 | DOI

[33] Walid Saad; Zhu Han; Tamer Basar; Mérouane Debbah; Are Hjorungnes Hedonic coalition formation for distributed task allocation among wireless agents, IEEE Transactions on Mobile Computing, Volume 10 (2010) no. 9, pp. 1327-1344 | DOI

[34] Vinicius Graciano Santos; Luiz Chaimowicz Cohesion and segregation in swarm navigation, Robotica, Volume 32 (2014) no. 2, pp. 209-223 | DOI

[35] Hong Shi; Guangming Xie Collective dynamics of swarms with a new attraction/repulsion function, Mathematical Problems in Engineering, Volume 2011 (2011), 735248, 14 pages | DOI | MR | Zbl

[36] Jur Van Den Berg; Stephen J Guy; Ming Lin; Dinesh Manocha Reciprocal n-body collision avoidance, Robotics research, Springer, 2011, pp. 3-19 | DOI | Zbl

[37] Lovekesh Vig; Julie A. Adams Market-based multi-robot coalition formation, Distributed Autonomous Robotic Systems 7, Springer, 2006, pp. 227-236 | DOI | Zbl

[38] Elaine Walster; Vera Aronson; Darcy Abrahams; Leon Rottman Importance of physical attractiveness in dating behavior, Journal of personality and social psychology, Volume 4 (1966) no. 5, pp. 508-516 | DOI

[39] Tianyu Wang; Lingyang Song; Zhu Han; Walid Saad Overlapping coalition formation games for emerging communication networks, IEEE Network, Volume 30 (2016) no. 5, pp. 46-53 | DOI

[40] D Yun Yeh A dynamic programming approach to the complete set partitioning problem, BIT Numerical Mathematics, Volume 26 (1986) no. 4, pp. 467-474 | DOI | MR | Zbl

Cité par Sources :