Cet article présente un modèle de simulation multi-agent multi-niveau d’autoconsommation collective de l’énergie. Le premier niveau de ce modèle est une simulation multi-agent de l’activité humaine couplée à une simulation thermique du bâtiment qui permet d’obtenir la consommation électrique d’un foyer. Le second niveau est une modélisation d’un groupement de foyers pratiquant l’autoconsommation collective d’énergie. Nous présentons une formalisation de cette notion de groupement ainsi que différentes organisations pour échanger de l’énergie. Nous étudions ensuite ces différentes organisations et nous montrons leur fort impact sur la répartition de l’énergie lorsque la production d’énergie est faible face à la consommation.
We present a multi-level multi-agent simulation of collective energy self-consumption. The first level of this model is a multi-agent simulation of human activity coupled with an energy simulation of the building, calculating the household’s energy consumption. The second level is a model of a group of households practising collective self-consumption of energy. We present a formalisation of this notion of grouping as well as different organizations to exchange energy. Last, we study these different organisations and show their strong impact on the distribution of energy when production is low compared to consumption.
Révisé le :
Accepté le :
Publié le :
Keywords: Multi-agent simulation, Building, Energetic consumption, Collective self-consumption.
Jérémy Albouys-Perrois 1, 2, 3, 4 ; Nicolas Sabouret 2 ; Yvon Haradji 3 ; Mathieu Schumann 3, 4 ; Benoit Charrier 3, 4 ; Christian Inard 1, 4
@article{ROIA_2022__3_5-6_477_0, author = {J\'er\'emy Albouys-Perrois and Nicolas Sabouret and Yvon Haradji and Mathieu Schumann and Benoit Charrier and Christian Inard}, title = {\'Etude de diff\'erentes configurations d{\textquoteright}autoconsommation collective de l{\textquoteright}\'energie \`a l{\textquoteright}\'echelle du quartier et \`a l{\textquoteright}aide de la simulation multi-agent}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {477--499}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {3}, number = {5-6}, year = {2022}, doi = {10.5802/roia.40}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.40/} }
TY - JOUR AU - Jérémy Albouys-Perrois AU - Nicolas Sabouret AU - Yvon Haradji AU - Mathieu Schumann AU - Benoit Charrier AU - Christian Inard TI - Étude de différentes configurations d’autoconsommation collective de l’énergie à l’échelle du quartier et à l’aide de la simulation multi-agent JO - Revue Ouverte d'Intelligence Artificielle PY - 2022 SP - 477 EP - 499 VL - 3 IS - 5-6 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.40/ DO - 10.5802/roia.40 LA - fr ID - ROIA_2022__3_5-6_477_0 ER -
%0 Journal Article %A Jérémy Albouys-Perrois %A Nicolas Sabouret %A Yvon Haradji %A Mathieu Schumann %A Benoit Charrier %A Christian Inard %T Étude de différentes configurations d’autoconsommation collective de l’énergie à l’échelle du quartier et à l’aide de la simulation multi-agent %J Revue Ouverte d'Intelligence Artificielle %D 2022 %P 477-499 %V 3 %N 5-6 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.40/ %R 10.5802/roia.40 %G fr %F ROIA_2022__3_5-6_477_0
Jérémy Albouys-Perrois; Nicolas Sabouret; Yvon Haradji; Mathieu Schumann; Benoit Charrier; Christian Inard. Étude de différentes configurations d’autoconsommation collective de l’énergie à l’échelle du quartier et à l’aide de la simulation multi-agent. Revue Ouverte d'Intelligence Artificielle, Post-actes des Journées Francophones sur les Systèmes Multi-Agents (JFSMA 2018-2019-2020), Volume 3 (2022) no. 5-6, pp. 477-499. doi : 10.5802/roia.40. https://roia.centre-mersenne.org/articles/10.5802/roia.40/
[1] Simulation multi-agent de l’autoconsommation collective de l’énergie à l’échelle du quartier en lien avec l’activité humaine et la consommation énergétique des bâtiments, Theses, Université de La Rochelle (2021)
[2] , Proceedings of the International Building Performance Simulation Association, Volume 16 (2019) | DOI
[3] , JFSMA 2019. Systèmes distribués, embarqués et diffus (2019)
[4] , Proceedings of the 5th International Conference on Agents and Artificial Intelligence, Volume 2 (2013), pp. 71-80
[5] Energy Consumption in the French Residential Sector : How Much do Individual Preferences Matter ?, The Energy Journal, Volume 40 (2019) no. 3, pp. 77-99 | DOI
[6] , Workshop on Distributed and Multi-Agent Planning (DMAP), ICAPS 2013 (2013), pp. 8-16
[7] Efficient Fair Division : Help the Worst off or Avoid Envy ?, Rationality and Society, Volume 17 (2005) no. 4, pp. 387-421 | DOI
[8] Modeling occupant behavior in buildings, Building and Environment, Volume 174 (2020), 106768 | DOI
[9] On the multi-agent stochastic simulation of occupants in buildings, Journal of Building Performance Simulation, Volume 11 (2018) no. 5, pp. 604-621 | DOI
[10] , Joint International Conference on Computing and Decision Making in Civil and Building Engineering, Montreal, Canada (2006)
[11] The effect of building envelope insulation on cooling energy consumption in summer, Energy and Buildings, Volume 77 (2014), pp. 197-205 | DOI
[12] Modélisation et simulation des comportements en lien avec les consommation électriques dans le secteur résidentiel, Ph. D. Thesis, Université de Bordeaux (2017)
[13] Occupant behavior in building energy simulation : Towards a fit-for-purpose modeling strategy, Energy and Buildings, Volume 121 (2016), pp. 188-204 | DOI
[14] Planning of a Smart Local Energy Community : The Case of Berchidda Municipality (Italy), Energies, Volume 12 (2019) no. 24, 4629 | DOI
[15] A review on occupant behavior in urban building energy models, Energy and Buildings, Volume 174 (2018), pp. 276-292 | DOI
[16] De la modélisation de l’activité humaine à la modélisation pour la simulation sociale : entre réalisme et fécondité technologique, Activités, Volume 15 (2018) no. 15-1 | DOI
[17] A Survey of Multi-Agent Organizational Paradigms, The Knowledge Engineering Review (2005), pp. 281-316 | DOI
[18] Simulation multi-agent d’un système complexe : combiner des domaines d’expertise par une approche multi-niveau. Le cas de la consommation électrique résidentielle, Theses, Université Pierre et Marie Curie – Paris VI (2015)
[19] Buildings don’t use energy : people do, Architectural science review, Volume 54 (2011) no. 1, pp. 15-22 | DOI
[20] Home energy rating system : Building energy simulation test (HERS BESTEST), National Renewable Energy Laboratory, 1995
[21] Exploring day-to-day variability in time use for household members, Transportation Research Part A : Policy and Practice, Volume 44 (2010) no. 8, pp. 609-619 | DOI
[22] Simulating the dynamics of occupant behaviour for power management in residential buildings, Energy and Buildings, Volume 56 (2013), pp. 85-93 | DOI
[23] Bidirectional energy trading for residential load scheduling and electric vehicles, Proceedings - IEEE INFOCOM, Volume 31 (2013) no. 7, pp. 595-599 | DOI
[24] Photovoltaic self-consumption in buildings : A review, Applied Energy, Volume 142 (2015), pp. 80-94 | DOI
[25] , 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), pp. 4619-4624
[26] Multi-level agent-based simulations : Four design patterns, Simulation Modelling Practice and Theory, Volume 83 (2018), pp. 51-64 | DOI
[27] Predicted vs. actual energy performance of non-domestic buildings : using post-occupancy evaluation data to reduce the performance gap, Applied Energy, Volume 97 (2012), pp. 355-364 | DOI
[28] Quantifying self-consumption of on-site photovoltaic power generation in households with electric vehicle home charging, Solar Energy, Volume 97 (2013), pp. 208-216 | DOI
[29] Two-to-one discrepancy between measured and predicted performance of a ‘low-energy’office building : insights from a reconciliation based on the DOE-2 model, Energy and buildings, Volume 21 (1994) no. 2, pp. 121-131 | DOI
[30] , Modelica Conference 2014 (2014), pp. 321-326 | DOI
[31] , Proceedings of the 10th International Modelica Conference ; March 10-12 ; 2014 ; Lund ; Sweden (2014), pp. 1161-1169 | DOI
[32] , IBPSA 2020 France (2020)
[33] , Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 1 : ICAART (2017) no. Icaart, pp. 67-77 | DOI
[34] , Journées Francophones sur les Systèmes Multi-Agents (JFSMA 2017) (2017)
[35] A descriptive model of contextual activities for the design of domestic situations, ECCE (2009), 13, 7 pages
[36] Brahms : a multi-agent modelling environment for simulating work processes and practices, International Journal of Simulation and Process Modelling, Volume 3 (2007) no. 3, p. 134 | DOI
[37] The contract net protocol : High-level communication and control in a distributed problem solver, IEEE Transactions on computers (1980) no. 12, pp. 1104-1113 | DOI
[38] Multi-criteria assessment of building performance : theory and implementation, Building and Environment, Volume 36 (2001) no. 6, pp. 681-690 | DOI
[39] , Distributed Computing and Artificial Intelligence, 14th International Conference (Advances in Intelligent Systems and Computing) (2018), pp. 79-86 | DOI
[40] Trading agents for the smart electricity grid, 9th International Conference on AAMAS 2010 (2010), pp. 897-904
[41] Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings, Applied Energy, Volume 126 (2014), pp. 199-212 | DOI
[42] A bottom-up stochastic model to predict building occupants’ time-dependent activities, Building and Environment, Volume 60 (2013), pp. 254-264 | DOI
[43] Optimal management of local energy trading in future smart microgrid via pricing, Proceedings - IEEE INFOCOM, Volume 2015-Augus (2015) no. 1, pp. 570-575 | DOI
[44] Effects of thermal insulation characteristics on energy consumption of buildings with intermittently operated air-conditioning systems under real time varying climate conditions, Energy and Buildings, Volume 155 (2017), pp. 559-570 | DOI
Cité par Sources :