Cet article décrit les apports de Jacques Pitrat à la programmation d’intelligences artificielles pour les jeux ainsi que les travaux qui ont puisé leur inspiration dans ses recherches. L’article commence par évoquer le General Game Playing, puis viennent ensuite l’apprentissage par généralisation, l’amorçage, la dualité entre politique et évaluation et une évocation des thèses sur les jeux dirigées par Jacques Pitrat.
This paper describes the contributions of Jacques Pitrat to artificial intelligence applied to games as well as some works that were inspired from his research. The paper evocates General Game Playing, then Explanation Based Generalization, Bootstrap, duality between policy and evaluation as well as some PhD thesis on games advised by Jacques Pitrat.
Révisé le :
Accepté le :
Publié le :
Mots clés : Artificial Intelligence, Games, General Game Playing, Machine Learning, Bootstrap.
Tristan Cazenave 1
@article{ROIA_2022__3_1-2_113_0, author = {Tristan Cazenave}, title = {Jacques {Pitrat,} {l{\textquoteright}Intelligence} {Artificielle} et les {Jeux}}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {113--126}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {3}, number = {1-2}, year = {2022}, doi = {10.5802/roia.22}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.22/} }
TY - JOUR AU - Tristan Cazenave TI - Jacques Pitrat, l’Intelligence Artificielle et les Jeux JO - Revue Ouverte d'Intelligence Artificielle PY - 2022 SP - 113 EP - 126 VL - 3 IS - 1-2 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.22/ DO - 10.5802/roia.22 LA - fr ID - ROIA_2022__3_1-2_113_0 ER -
%0 Journal Article %A Tristan Cazenave %T Jacques Pitrat, l’Intelligence Artificielle et les Jeux %J Revue Ouverte d'Intelligence Artificielle %D 2022 %P 113-126 %V 3 %N 1-2 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.22/ %R 10.5802/roia.22 %G fr %F ROIA_2022__3_1-2_113_0
Tristan Cazenave. Jacques Pitrat, l’Intelligence Artificielle et les Jeux. Revue Ouverte d'Intelligence Artificielle, Hommage à Jacques Pitrat, Volume 3 (2022) no. 1-2, pp. 113-126. doi : 10.5802/roia.22. https://roia.centre-mersenne.org/articles/10.5802/roia.22/
[1] Panel on Computer Game Playing, IJCAI (1977), pp. 975-982
[2] Modélisation cognitive du joueur de Go, Ph. D. Thesis, Université Paris 6 (1995)
[3] A Practical Introduction to the Ludii General Game System, Advances in Computer Games (2019), pp. 167-179 | DOI
[10] Disparition de Jacques Pitrat (2019) (Site web du CNRS https://ins2i.cnrs.fr/fr/cnrsinfo/disparition-de-jacques-pitrat)
[17] Heuristic evaluation functions for general game playing, KI-Künstliche Intelligenz, Volume 25 (2011) no. 1, pp. 73-74 | DOI
[18] Minimax Strikes Back, Workshop Reinforcement Learning in Games at AAAI (2021)
[19] Explanation-based learning : An alternative view, Machine learning, Volume 1 (1986) no. 2, pp. 145-176 | DOI
[20] Hommage à Jacques Pitrat, Bulletin de l’AFIA, Volume 107 (2020), p. 4
[21] Algorithm and knowledge engineering for the TSPTW problem, Computational Intelligence in Scheduling (SCIS), 2013 IEEE Symposium on (2013), pp. 44-51 | DOI
[22] Monte-Carlo Tree Search for Logistics, Commercial Transport, Springer International Publishing, 2016, pp. 427-440 | DOI
[23] Monte-Carlo Tree Search for the Multiple Sequence Alignment Problem, Eighth Annual Symposium on Combinatorial Search (2015)
[24] Simulation-Based Approach to General Game Playing, AAAI (2008), pp. 259-264
[25] Hommage à Jacques Pitrat, Bulletin de la Société Informatique de France, Volume 15 (2020), pp. 113-116
[26] General Game Playing : Overview of the AAAI Competition, AI Magazine, Volume 26 (2005) no. 2, pp. 62-72 | DOI
[27] A New Approach to the Snake-In-The-Box Problem, ECAI, Volume 242 (2012), pp. 462-467 | DOI
[28] Bandit based Monte-Carlo planning, 17th European Conference on Machine Learning (ECML’06) (LNCS), Volume 4212 (2006), pp. 282-293 | DOI
[29] Monte-carlo tree search for general game playing, Univ. Paris, Volume 8 (2008)
[30] Ary, a general game playing program, Board games studies colloquium (2010)
[31] Combining UCT and Nested Monte Carlo Search for Single-Player General Game Playing, IEEE Transactions on Computational Intelligence and AI in Games, Volume 2 (2010) no. 4, pp. 271-277 | DOI
[32] A Parallel General Game Player, KI, Volume 25 (2011) no. 1, pp. 43-47 | DOI
[33] Constraint-based generalization : Learning game-playing plans from single examples, Proceedings of the Fourth AAAI Conference on Artificial Intelligence (1984), pp. 251-254
[34] Explanation-based generalization : A unifying view, Machine learning, Volume 1 (1986) no. 1, pp. 47-80 | DOI
[35] Strategos : un système multi-jeux utilisant la théorie combinatoire des jeux, capable d’apprendre automatiquement les dépendances entre sous-jeux locaux, Ph. D. Thesis, Université Paris 6 (2000)
[36] La conception et la réalisation d’un générateur automatique de commentaires : le système GénéCom. Application au jeu du Tarot, Ph. D. Thesis, Université Paris 6 (1995)
[37] Un système général avec un contrôle de la résolution à base de métaconnaissances pour des problèmes d’affectation optimale, Ph. D. Thesis, Université Pierre et Marie Curie (2002)
[38] Strategy generation and evaluation for meta-game playing, Ph. D. Thesis, Citeseer (1993)
[39] Realization of a general game-playing program, IFIP Congress (2) (1968), pp. 1570-1574
[40] A General Game Playing Program, Artificial Intelligence and Heuristic Programming (eds. Findler and Meltzer) (1971), pp. 125-155
[41] A Program to Learn to Play Chess, Pattern Recognition and Artificial Intelligence (1976), pp. 399-419
[42] Realization of a program learning to find combinations at chess, Computer oriented learning processes, Volume 14, Noordhoff, 1976 | DOI
[43] A chess combination program which uses plans, Artificial Intelligence, Volume 8 (1977) no. 3, pp. 275-321 | DOI
[44] The behaviour of a chess combination program using plans, Advances in Computer Chess, Volume 2 (1979)
[45] A Program which Uses Plans for Finding Combinations in Chess, ICCA Newsletter, Volume 2 (1979) no. 2
[46] MACISTE ou comment utiliser un ordinateur sans écrire de programme, Colloque Intelligence Artificielle de Toulouse, publication 58, CNRS-LAFORIA, Université de Paris VI (1985), pp. 223-240
[47] Métaconnaissance, futur de l’intelligence artificielle, Hermès, Paris, 1990
[48] Games : The next challenge, ICGA Journal, Volume 21 (1998) no. 3, pp. 147-156 | DOI
[49] Artificial beings : the conscience of a conscious machine, John Wiley & Sons, 2013
[50] An unexpectedly effective Monte Carlo technique for the RNA inverse folding problem, BioRxiv (2018) | DOI
[51] Generating structured test data with specific properties using nested Monte-Carlo search, Genetic and Evolutionary Computation Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014 (2014), pp. 1279-1286 | DOI
[52] Gobelin une approche pragmatique de l’abstraction appliquée à la modélisation de la stratégie élémentaire du jeu de Go, Ph. D. Thesis, Université Paris 6 (1995)
[53] Jacques Pitrat (54) Pionnier Français de l’Intelligence Artificielle, La Jaune et la Rouge, Volume 756 (2020) no. 6, p. 22
[54] Nested Rollout Policy Adaptation for Monte Carlo Tree Search, IJCAI (2011), pp. 649-654
[56] Mastering the game of Go with deep neural networks and tree search, Nature, Volume 529 (2016) no. 7587, pp. 484-489 | DOI
[57] A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science, Volume 362 (2018) no. 6419, pp. 1140-1144 | DOI
[58] Mastering the game of go without human knowledge, Nature, Volume 550 (2017) no. 7676, p. 354 | DOI
[59] Monte-Carlo Tree Search for Artificial General Intelligence in Games, Ph. D. Thesis, Maastricht University (2019) | DOI
Cité par Sources :