Simulation du passage des intentions aux actions en agriculture
Revue Ouverte d'Intelligence Artificielle, Volume 2 (2021) no. 1, pp. 95-122.

Dans la conduite des processus de production agricole, toute activité entreprise par l’agriculteur répond à des buts immédiats ou à plus ou moins long terme. Les motivations de l’agriculteur peuvent se décliner en un ensemble d’intentions qui exprime, sous la forme d’un plan flexible, un engagement sur la façon pratique d’aller dans la direction souhaitée. La nature flexible du plan permet d’intégrer un large éventail de possibilités et de comportements pertinents selon les éventualités susceptibles de survenir. Du fait de cette flexibilité le problème de détermination des actions à exécuter et des modalités de l’exécution se pose continuellement et doit se traiter en fonction de la situation biophysique courante. En particulier, une décision importante concerne le moment du passage à l’acte et, avant cela, le moment à partir duquel il convient de surveiller la pertinence de passage à l’acte. Lorsque plusieurs possibilités d’actions sont ouvertes il faut déterminer lesquelles peuvent matériellement être exécutées compte tenu des ressources à mobiliser et lesquelles sont préférables selon les critères mis en avant par l’agriculteur.

L’article décrit la représentation des plans flexibles et des processus invoqués lors de l’exécution, le mécanisme qui permet de simuler le changement d’état des intentions avec l’avancée du temps, et le mécanisme par lequel sont déterminées les actions à exécuter. Ces aspects ont été incorporées dans une plateforme de simulation à événements discrets qui a été utilisée pour développer des modèles de différents systèmes de production agricole allant de l’élevage à la viticulture. Ces modèles permettent d’étudier l’importance des capacités organisationnelles et décisionnelles des agriculteurs dans l’explication des différences de performances économiques et environnementales au sein de la profession.

In the conduct of agricultural production processes, any activity undertaken by the farmer responds to immediate or more or less long-term goals. The farmer’s motivations can be expressed in a set of intentions that expresses, in the form of a flexible plan, a commitment to proceed in a certain way in order to move in the desired direction. The flexible nature of the plan allows for a wide range of possibilities and relevant behaviors to be incorporated depending on the contingencies that may arise. Because of this flexibility, the problem of determining what actions to take and how to take them arises continuously and must be dealt with in accordance with the current biophysical situation. In particular, an important decision concerns the time of the action and, before that, the time from which the relevance of the action should be monitored. When several action options are open, it is necessary to determine which ones can be physically executed given the resources to be mobilized and which ones are preferable according to the criteria put forward by the farmer.

The article describes the representation of the flexible plans and the processes invoked during the execution, the mechanism that allows to simulate the change of state of the intentions with the advance of time, and the mechanism by which the actions to be executed are determined. These aspects have been incorporated into a discrete event simulation platform that has been used to develop models of different agricultural production systems ranging from livestock to vineyards. These models allow us to study the importance of farmers’ organizational and decision-making abilities in explaining differences in economic and environmental performance within the profession.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/roia.11
Mots clés : Décision, Intention, Action, Simulation à événements discrets
Roger Martin-Clouaire 1 ; Jean-Pierre Rellier 1

1 Université de Toulouse, INRAE, UR MIAT, 31320 Castanet-Tolosan, France
@article{ROIA_2021__2_1_95_0,
     author = {Roger Martin-Clouaire and Jean-Pierre Rellier},
     title = {Simulation du passage des~intentions aux actions en~agriculture},
     journal = {Revue Ouverte d'Intelligence Artificielle},
     pages = {95--122},
     publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle},
     volume = {2},
     number = {1},
     year = {2021},
     doi = {10.5802/roia.11},
     language = {fr},
     url = {https://roia.centre-mersenne.org/articles/10.5802/roia.11/}
}
TY  - JOUR
TI  - Simulation du passage des intentions aux actions en agriculture
JO  - Revue Ouverte d'Intelligence Artificielle
PY  - 2021
DA  - 2021///
SP  - 95
EP  - 122
VL  - 2
IS  - 1
PB  - Association pour la diffusion de la recherche francophone en intelligence artificielle
UR  - https://roia.centre-mersenne.org/articles/10.5802/roia.11/
UR  - https://doi.org/10.5802/roia.11
DO  - 10.5802/roia.11
LA  - fr
ID  - ROIA_2021__2_1_95_0
ER  - 
%0 Journal Article
%T Simulation du passage des intentions aux actions en agriculture
%J Revue Ouverte d'Intelligence Artificielle
%D 2021
%P 95-122
%V 2
%N 1
%I Association pour la diffusion de la recherche francophone en intelligence artificielle
%U https://doi.org/10.5802/roia.11
%R 10.5802/roia.11
%G fr
%F ROIA_2021__2_1_95_0
Roger Martin-Clouaire; Jean-Pierre Rellier. Simulation du passage des intentions aux actions en agriculture. Revue Ouverte d'Intelligence Artificielle, Volume 2 (2021) no. 1, pp. 95-122. doi : 10.5802/roia.11. https://roia.centre-mersenne.org/articles/10.5802/roia.11/

[1] G. E. Anscombe Intentions, Blackwell, Oxford, UK, 1963

[2] J. Antle; S. Capalbo; E. Elliott; H. Hunt; S. Mooney; K. Paustian Research Needs for Understanding and Predicting the Behavior of Managed Ecosystems : Lessons from the Study of Agroecosystems, Ecosystems, Volume 4 (2001), pp. 723-735 | Article

[3] M. Bratman Intentions, Plans and Practical Reason, Harvard University Press, Cambridge, 1987

[4] M. Bratman; D. Israel; M. Pollack Plans and resource-bounded practical reasoning, Computational Intelligence, Volume 4 (1988) no. 3, pp. 349-355 | Article

[5] D. Davidson Essays on Actions and Events, Oxford University Press, Oxford, UK, 1980

[6] G. De Giacomo; Y. Lespérance; H. Levesque Congolog, a concurrent programming language based on the situation calculus, Artificial Intelligence, Volume 121 (2000) no. 1, pp. 109-169 | Article

[7] G. Edwards-Jones Modelling farmer decision-making : concepts, progress and challenges, Animal Science, Volume 82 (2006), pp. 783-790 | Article

[8] G. Feola; C. Binder Towards an improved understanding of farmers’ behaviour : the integrative agent-centered (IAC) framework, Ecological Economics, Volume 69 (2010), pp. 2323-2333 | Article

[9] M. Georgeff; F. Ingrand Decision-making in an embedded reasoning system, International Joint Conference on Artificial Intelligence (IJCAI-89) (1989), pp. 972-978

[10] M. Ghallab; D. Nau; P. Traverso The actor’s view of automated planning and acting : A position paper, Artificial Intelligence, Volume 208 (2014), pp. 1-17 | Article

[11] G. Gigerenzer Fast and frugal heuristics : The tools of bounded rationality, Blackwell handbook of judgment and decision making (D. Koehler; N. Harvey, eds.), Blackwell, Oxford, UK, 2004, pp. 62-88 | Article

[12] J. B. Hardaker; R. B. M. Huirne; J. R. Anderson Coping with Risk in Agriculture, CAB International, Wallingford, 1997

[13] A. Herzig; E. Lorini; L. Perrussel; Z. Xiao BDI logics for BDI architectures : old problems, new perspectives, KI - Künstliche Intelligenz, Volume 31 (2017) no. 1, pp. 73-83 | Article

[14] F. Ingrand; M. Georgeff; A. Rao An architecture for real-time reasoning and system control, IEEE Expert, Volume 7 (1992) no. 6, pp. 34-44 | Article

[15] G. Martin; R. Martin-Clouaire; J.-P. Rellier; M. Duru A conceptual model of grassland-based beef systems, International Journal of Agricultural and Environmental Information Systems, Volume 2 (2011) no. 1, pp. 20-39 | Article

[16] G. Martin; R. Martin-Clouaire; J.-P. Rellier; M. Duru A simulation framework for the design of grasslandbased beef-cattle farms, Environmental Modelling & Software, Volume 26 (2011), pp. 371-385 | Article

[17] Y. Martin The concurrent continuous FLUX, International Joint Conference on Artificial Intelligence (IJCAI-03) (2003), pp. 1085-1090

[18] R. Martin-Clouaire Modelling operational decision-making in agriculture, Agricultural Sciences, Volume 8 (2017), pp. 527-544 | Article

[19] R. Martin-Clouaire Ontological foundation of ecosystem services and the human dimension of agroecosystems, Agricultural Sciences, Volume 9 (2018), pp. 525-545 | Article

[20] R. Martin-Clouaire Knowledge elicitation and modeling of agroecological management strategies, Information and Communication Technologies for Agriculture–Theme III : Decision (D. Bochtis; C. Sørensen; S. Fountasand; V. Moysiadis; P.M. Pardalos, eds.), Springer, 2021

[21] R. Martin-Clouaire; J.-P. Rellier Fondements ontologiques des systèmes pilotés (2004) Rapport Interne UBIA-INRA, Toulouse-Auzeville (dernière version : juin 2012). https://hal.inrae.fr/hal-03153904/file/Ontol-Syst-pilot.pdf (Technical report)

[22] R. Martin-Clouaire; J.-P. Rellier Modelling and simulating work practices in agriculture, International Journal of Metadata, Semantics and Ontologies, Volume 4 (2009), pp. 42-53 | Article

[23] R. Martin-Clouaire; J.-P. Rellier Dynamic Resource Allocation in Farm Management Simulation, 19th International Congress on Modelling and Simulation (MODSIM2011) (2011), pp. 808-814 (http://www.mssanz.org.au/modsim2011/B1/martin_clouaire.pdf)

[24] R. Martin-Clouaire; J.-P. Rellier; N. Paré; M. Voltz; A. Biarnès Modelling management practices in viticulture while considering resource limitations : the Dhivine model, PLoS ONE, Volume 11 (2016) no. 3, e0151952, 21 pages

[25] R. McCown New Thinking About Farmer Decision Makers, The Farmer’s Decision : Balancing Economic Successful Agriculture Production with Environmental Quality (J.L. Hatfield, ed.), Soil and Water Conservation Society, Ankeny, Iowa, USA, 2005, pp. 11-44

[26] R. McCown; G. Hammer; J. Hargreaves; D. Holzworth; D. Freebairn APSIM : a novel software system for model development, model testing and simulation in agricultural systems research, Agricultural Systems, Volume 50 (1996) no. 3, pp. 255-271 | Article

[27] B. Öhlmér; K. Olson; B. Brehmer Understanding farmers’ decision making processes and improving managerial assistance, Agricultural Economics, Volume 18 (1998), pp. 273-290 | Article

[28] E. Pacherie 29(T), Conscious Intentions - The Social Creation Myth (2015)

[29] J.-P. Rellier DIESE : un outil de modélisation et de simulation de systèmes d’intérêt agronomique (2005) (Rapport Interne UBIA-INRA, Toulouse-Auzeville. https://carlit.toulouse.inra.fr/diese/docs/ri_diese.pdf) (Technical report)

[30] J.-P. Rellier; R. Martin-Clouaire; N. Cialdella; M. Jeuffroy; J. Meynard Modélisation de l’organisation du travail en systèmes de grande culture : méthode et application à l’évaluation ex ante d’innovations variétales de pois, Le travail en agriculture : son organisation et ses valeurs face à l’innovation (P. Béguin; B. Dedieu; E. Sabourin, eds.), L’Harmattan, 2011, pp. 205-221

[31] M. Schlüter; A. Baeza; G. Dressler; K. Frank; J. Groeneveld; W. Jager; M. Janssen; R. McAllister; B. Müller; K. Orach; N. Schwarz; N. Wijermans A framework for mapping and comparing behavioural theories in models of social-ecological systems, Ecological Economics, Volume 131 (2017), pp. 21-35 | Article

[32] H. A. Simon The Sciences of the artificial, The MIT Press, Cambridge, MA, 1996, e0151952

[33] S. Smith; M. Becker An ontology for constructing scheduling systems, AAAI-97 Spring Symposium on Ontological Engineering (1997)

[34] S. F. Smith; D. W. Hildum; D. R. Crimm COMIREM : an intelligent form for resource management, IEEE Intelligent Systems, Volume 20 (2005) no. 2, pp. 16-24 | Article

[35] W. M. P. van der Aalst Business Process Management : A Comprehensive Survey, ISRN Software Engineering, Volume 2013 (2013), pp. 1-37 | Article

[36] K. Waldman; P. Todd; S. Omar; J. Blekking; S. Giroux; S. Attari; K. Baylis; T. Evans Agricultural decision making and climate uncertainty in developing countries, Environmental Research Letters, Volume 15 (2020) no. 11, 113004, 19 pages | Article

[37] A. Wezel Agroecological Practices for Sustainable Agriculture : Principles, Applications, and Making the Transition, World Scientific, London, 2017 | Article

[38] F. Wieber; J.L. Thürmer; P. Gollwitzer Intentional Action Control in Individuals and Groups, Acting intentionally and its limits : individuals, groups, institutions (G. Seebass; M. Schmitz; P. Gollwitzer, eds.), De Gruyter, Berlin, 2013, 113004, pp. 133-162 | Article

[39] M. Wooldridge An Introduction to Multi-Agent Systems, John Wiley & Sons, Hoboken, 2009

Cité par Sources :