L’idée d’utiliser des formules logiques pour représenter de la connaissance et raisonner sur celle-ci remonte aux années 60, et en particulier à une proposition de McCarthy [23]. Une des directions de recherche émanant de cette proposition a conduit à la genèse du langage Prolog et au paradigme de la Programmation Logique [4]. Une évolution importante de prolog a été l’incorporation du mécanisme du cut qui a permis par la suite la mise en place de la négation par échec. Les recherches visant à établir une sémantique déclarative à la négation par échec ont débouché sur la notion de modèle stable, et sur un nouveau paradigme de la programmation logique succédant à Prolog et appelé ASP. Par la suite, des travaux se sont intéressés aux programmes logiquement consistants mais n’admettant pas de modèles stables. Un exemple de tels travaux est la sémantique des extra-modèles.
Using logic formulas in order to represent knowledge and reason about it is an idea dating back to the 60s, in particular to a proposition by McCarthy [23]. One of the axis of research stemming from this proposition leads to the genesis of Prolog, and to the Logic Programming paradigm [4]. An important evolution of Prolog was the incorporation of the cut mechanism, which subsequently allowed the development of negation as failure. Research aimed at establishing a declarative semantics of negation by failure led to the notion of stable model, and to a new paradigm of logic programming succeeding Prolog and called ASP. Subsequent work focused on programs which, while logically consistent, do not admit stable models. An example of such work is the extra-model semantics.
Accepté le :
Publié le :
Keywords: logic programing, prolog, stable models semantics.
Belaïd Benhamou 1 ; Vincent Risch 2 ; Éric Würbel 2
@article{ROIA_2024__5_2-3_177_0, author = {Bela{\"\i}d Benhamou and Vincent Risch and \'Eric W\"urbel}, title = {ASP~: un devenir de {Prolog}}, journal = {Revue Ouverte d'Intelligence Artificielle}, pages = {177--202}, publisher = {Association pour la diffusion de la recherche francophone en intelligence artificielle}, volume = {5}, number = {2-3}, year = {2024}, doi = {10.5802/roia.78}, language = {fr}, url = {https://roia.centre-mersenne.org/articles/10.5802/roia.78/} }
TY - JOUR AU - Belaïd Benhamou AU - Vincent Risch AU - Éric Würbel TI - ASP : un devenir de Prolog JO - Revue Ouverte d'Intelligence Artificielle PY - 2024 SP - 177 EP - 202 VL - 5 IS - 2-3 PB - Association pour la diffusion de la recherche francophone en intelligence artificielle UR - https://roia.centre-mersenne.org/articles/10.5802/roia.78/ DO - 10.5802/roia.78 LA - fr ID - ROIA_2024__5_2-3_177_0 ER -
%0 Journal Article %A Belaïd Benhamou %A Vincent Risch %A Éric Würbel %T ASP : un devenir de Prolog %J Revue Ouverte d'Intelligence Artificielle %D 2024 %P 177-202 %V 5 %N 2-3 %I Association pour la diffusion de la recherche francophone en intelligence artificielle %U https://roia.centre-mersenne.org/articles/10.5802/roia.78/ %R 10.5802/roia.78 %G fr %F ROIA_2024__5_2-3_177_0
Belaïd Benhamou; Vincent Risch; Éric Würbel. ASP : un devenir de Prolog. Revue Ouverte d'Intelligence Artificielle, Hommage à Alain Colmerauer, Volume 5 (2024) no. 2-3, pp. 177-202. doi : 10.5802/roia.78. https://roia.centre-mersenne.org/articles/10.5802/roia.78/
[1] A New Semantics for Logic Programs Capturing and Extending the Stable Model Semantics, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence (2012), pp. 572-579 | DOI
[2] Negation as Failure, Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977 (Hervé Gallaire; Jack Minker, eds.) (Advances in Data Base Theory), Plemum Press, New York (1977), pp. 293-322 | DOI
[3] Metamorphosis Grammars, Natural Language Communication with Computers (Leonard Bolc, ed.) (Lecture Notes in Computer Science), Volume 63, Springer (1978), pp. 133-189 | DOI
[4] Un système de communication homme-machine en français (1973) (Technical report)
[5] The Birth of Prolog, Association for Computing Machinery, New York, NY, USA (1996), p. 331–367 | DOI
[6] Answer Set Programming with Constraints Using Lazy Grounding, Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings (P. M. Hill; D. S. Warren, eds.) (Lecture Notes in Computer Science), Volume 5649, Springer (2009), pp. 115-129 | DOI
[7] A Machine Program for Theorem-Proving, Commun. ACM, Volume 5 (1962) no. 7, p. 394–397 | DOI | Zbl
[8] The KR System dlv : Progress Report, Comparisons and Benchmarks, Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR’98), Trento, Italy, June2-5, 1998 (A. G. Cohn; L. K. Schubert; S.C. Shapiro, eds.), Morgan Kaufmann (1998), pp. 406-417
[9] The Semantics of Predicate Logic as a Programming Language, J. ACM, Volume 23 (1976) no. 4, pp. 733-742 | DOI | Zbl
[10] Consistency of Clark’s completion and existence of stable models, Thoery and Practice of Logic Programming, Volume 1 (1994), pp. 51-60
[11] Conflict-driven answer set solving : From theory to practice, Artif. Intell., Volume 187 (2012), pp. 52-89 | DOI | Zbl
[12] The stable model semantics for logic programming, Proceedings of International Logic Programming Conference and Symposium (Robert Kowalski; Kenneth Bowen, eds.), MIT Press (1988), pp. 1070-1080
[13] SAT-Based Answer Set Programming, Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA (D. L. McGuinness; G. Ferguson, eds.), AAAI Press / The MIT Press (2004), pp. 61-66 http://www.aaai.org/Library/AAAI/2004/aaai04-010.php
[14] A new method for computing stable models in logic programming, 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI) (2018), pp. 800-807 | DOI
[15] Predicate Logic as Programming Language, Information Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974 (Jack L. Rosenfeld, ed.), North-Holland (1974), pp. 569-574
[16] 4 : Programmation logique, Algorithmes pour l’Intelligence Artificielle (P. Marquis; O. Papini; H. Prades, eds.) (Panorama de l’Intelligence Artificielle), Volume 2, Cépaduès, 2014, pp. 739-771
[17] A First Order Forward Chaining Approach for Answer Set Computing, Logic Programming and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Proceedings (E. Erdem; F. Lin; T. Schaub, eds.) (Lecture Notes in Computer Science), Volume 5753, Springer (2009), pp. 196-208 | DOI | Zbl
[18] The First Version of a New ASP Solver : ASPeRiX, Logic Programming and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Proceedings (E. Erdem; F. Lin; T. Schaub, eds.) (Lecture Notes in Computer Science), Volume 5753, Springer (2009), pp. 522-527 | DOI
[19] Cmodels-2 : SAT-based Answer Set Solver Enhanced to Non-tight Programs, Logic Programming and Nonmonotonic Reasoning, 7th International Conference, LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, 2004, Proceedings (V. Lifschitz; I. Niemelä, eds.) (Lecture Notes in Computer Science), Volume 2923, Springer (2004), pp. 346-350 | DOI | Zbl
[20] ASSAT : computing answer sets of a logic program by SAT solvers, Artif. Intell., Volume 157 (2004) no. 1-2, pp. 115-137 | DOI | Zbl
[21] A linear format for resolution, Symposium on Automatic Demonstration (M. Laudet; D. Lacombe; L. Nolin; M. Schützenberger, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg (1970), pp. 147-162 | DOI | Zbl
[22] Refinement theorems in resolution theory, Symposium on Automatic Demonstration (M. Laudet; D. Lacombe; L. Nolin; M. Schützenberger, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg (1970), pp. 163-190 | DOI | Zbl
[23] Programs with Common Sense, Proceedings of the Teddington Conference on the Mechanization of Thought Processes, Her Majesty’s Stationary Office, London (1959), pp. 75-91
[24] Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm, Ann. Math. Artif. Intell., Volume 25 (1999) no. 3-4, pp. 241-273 | DOI | Zbl
[25] On Closed World Data Bases, Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977 (H. Gallaire; J. Minker, eds.) (Advances in Data Base Theory), Plemum Press (1977), pp. 55-76 | DOI
[26] A logic for default reasoning, Artif. Intell., Volume 13 (1980), pp. 81-132 | DOI | Zbl
[27] A Machine-Oriented Logic Based on the Resolution Principle, J. ACM, Volume 12 (1965) no. 1, pp. 23-41 | DOI | Zbl
[28] A Modal Logic for Hypothesis Theory, Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf., Volume 21 (1994) no. 1-2, pp. 89-101 | Zbl
[29] Hypothesis theory for nonmonotonic reasoning, Workshop on Nonstandard Queries and Answers, Toulouse, July 1991 (1991)
[30] Extending and implementing the stable model semantics, 2000, pp. 305-316 (In doctoral dessertation)
[31] Backdoors To Typical Case Complexity, IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003 (G. Gottlob; T. Walsh, eds.), Morgan Kaufmann (2003), pp. 1173-1178 http://ijcai.org/Proceedings/03/Papers/168.pdf | DOI
Cité par Sources :